THE DISJUNCTIVE DOMINATION NUMBER OF A GRAPH

被引:26
作者
Goddard, Wayne [1 ]
Henning, Michael A. [2 ]
McPillan, Charles A. [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
基金
新加坡国家研究基金会;
关键词
Graph; domination; distance; algorithms;
D O I
10.2989/16073606.2014.894688
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer b, we define a set S of vertices in a graph G as a b-disjunctive dominating set if every vertex not in S is adjacent to a vertex of S or has at least b vertices in S at distance 2 from it. The b-disjunctive domination number is the minimum cardinality of such a set. This concept is motivated by the concepts of distance domination and exponential domination. In this paper, we start with some simple results, then establish bounds on the parameter especially for regular graphs and claw-free graphs. We also show that determining the parameter is NP-complete, and provide a linear-time algorithm for trees.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 13 条
[1]  
Anderson M, 2009, AKCE INT J GRAPHS CO, V6, P341
[2]  
[Anonymous], DISCRETE MATH
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[4]   Domination with exponential decay [J].
Dankelmann, Peter ;
Day, David ;
Erwin, David ;
Mukwembi, Simon ;
Swart, Henda .
DISCRETE MATHEMATICS, 2009, 309 (19) :5877-5883
[5]  
Fink J. F., 1985, Periodica Mathematica Hungarica, V16, P287, DOI 10.1007/BF01848079
[6]  
Goddard W, 2008, UTILITAS MATHEMATICA, V75, P193
[7]  
Hedetniemi SM, 2008, AKCE INT J GRAPHS CO, V5, P103
[8]  
Henning M.A., 1991, J. Combin. Inform. System Sci, V16, P11
[9]  
JACOBSON MS, 1983, ARS COMBINATORIA, V18, P33
[10]   DOMINATION IN GRAPHS WITH MINIMUM DEGREE-2 [J].
MCCUAIG, W ;
SHEPHERD, B .
JOURNAL OF GRAPH THEORY, 1989, 13 (06) :749-762