Inner amenable groups having no stable action

被引:9
作者
Kida, Yoshikata [1 ]
机构
[1] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
关键词
Inner amenability; Orbit equivalence; Stability; Property Gamma; ASYMPTOTICALLY INVARIANT SEQUENCES; EQUIVALENCE-RELATIONS; PROPERTY-GAMMA; AMENABILITY;
D O I
10.1007/s10711-013-9936-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct inner amenable and ICC groups having no ergodic, free, probability-measure-preserving and stable action. This solves a problem posed by Jones-Schmidt in 1987.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 18 条
[1]   The rank gradient from a combinatorial viewpoint [J].
Abert, Miklos ;
Jaikin-Zapirain, Andrei ;
Nikolov, Nikolay .
GROUPS GEOMETRY AND DYNAMICS, 2011, 5 (02) :213-230
[2]   INDECOMPOSABILITY OF EQUIVALENCE-RELATIONS GENERATED BY WORD HYPERBOLIC GROUPS [J].
ADAMS, S .
TOPOLOGY, 1994, 33 (04) :785-798
[3]  
[Anonymous], 2008, NEW MATH MONOGRAPHS
[4]  
BEDOS E, 1986, ENSEIGN MATH, V32, P139
[5]   RELATIVELY HYPERBOLIC GROUPS [J].
Bowditch, B. H. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (03)
[6]   ERGODIC SUBEQUIVALENCE RELATIONS INDUCED BY A BERNOULLI ACTION [J].
Chifan, Ionut ;
Ioana, Adrian .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) :53-67
[7]   PROPERTY-GAMMA AND INNER AMENABILITY [J].
EFFROS, EG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) :483-486
[8]   SUBRELATIONS OF ERGODIC EQUIVALENCE-RELATIONS [J].
FELDMAN, J ;
SUTHERLAND, CE ;
ZIMMER, RJ .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1989, 9 :239-269
[9]   ASYMPTOTICALLY INVARIANT SEQUENCES AND APPROXIMATE FINITENESS [J].
JONES, VFR ;
SCHMIDT, K .
AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (01) :91-114
[10]  
Kida Y., TOHOKU MATH IN PRESS