In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications

被引:21
作者
Celikkin, Nehar [1 ,2 ]
Mastrogiacomo, Simone [3 ,4 ]
Dou, Weiqiang [5 ]
Heerschap, Arend [5 ]
Oosterwijk, Egbert [6 ]
Walboomers, X. Frank [3 ]
Swieszkowski, Wojciech [1 ]
机构
[1] Warsaw Univ Technol, Fac Mat Sci & Engn, Woloska 141, PL-02507 Warsaw, Poland
[2] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland
[3] Radboud Univ Nijmegen, Dept Biomat, Med Ctr, Nijmegen, Netherlands
[4] NINDS, Lab Funct & Mol Imaging, NIH, Bethesda, MD USA
[5] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, Nijmegen, Netherlands
[6] Radboud Univ Nijmegen, Radboud Inst Mol Life Sci, Dept Urol, Med Ctr, Nijmegen, Netherlands
关键词
3D bioprinting; biomaterials; bone tissue engineering; gelatin methacrylate; hydrogels; mesenchymal stem cells; MESENCHYMAL STEM-CELLS; CROSS-LINKING; CARTILAGE TISSUE; SCAFFOLDS;
D O I
10.1002/jbm.b.35067
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bone tissue engineering (BTE) has made significant progress in developing and assessing different types of bio-substitutes. However, scaffolds production through standardized methods, as required for good manufacturing process (GMP), and post-transplant in vivo monitoring still limit their translation into the clinic. 3D printed 5% GelMA scaffolds have been prepared through an optimized and reproducible process in this work. Mesenchymal stem cells (MSC) were encapsulated in the 3D printable GelMA ink, and their biological properties were assessed in vitro to evaluate their potential for cell delivery application. Moreover, in vivo implantation of the pristine 3D printed GelMA has been performed in a rat condyle defect model. Whereas optimal tissue integration was observed via histology, no signs of fibrotic encapsulation or inhibited bone formation were attained. A multimodal imaging workflow based on computed tomography (CT) and magnetic resonance imaging (MRI) allowed the simultaneous monitoring of both new bone formation and scaffold degradation. These outcomes point out the direction to undertake in developing 3D printed-based hydrogels for BTE that can allow a faster transition into clinical use.
引用
收藏
页码:2133 / 2145
页数:13
相关论文
共 64 条
[1]   In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds [J].
Abbasi, Naghmeh ;
Lee, Ryan S. B. ;
Ivanovski, Saso ;
Love, Robert M. ;
Hamlet, Stephen .
BIOMATERIALS RESEARCH, 2020, 24 (01)
[2]   Medical imaging of tissue engineering and regenerative medicine constructs [J].
Berry, David B. ;
Englund, Erin K. ;
Chen, Shaochen ;
Frank, Lawrence R. ;
Ward, Samuel R. .
BIOMATERIALS SCIENCE, 2021, 9 (02) :301-314
[3]   Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels [J].
Bertassoni, Luiz E. ;
Cardoso, Juliana C. ;
Manoharan, Vijayan ;
Cristino, Ana L. ;
Bhise, Nupura S. ;
Araujo, Wesleyan A. ;
Zorlutuna, Pinar ;
Vrana, Nihal E. ;
Ghaemmaghami, Amir M. ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
BIOFABRICATION, 2014, 6 (02)
[4]   The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability [J].
Billiet, Thomas ;
Gevaert, Elien ;
De Schryver, Thomas ;
Cornelissen, Maria ;
Dubruel, Peter .
BIOMATERIALS, 2014, 35 (01) :49-62
[5]   Bioprinted Osteogenic and Vasculogenic Patterns for Engineering 3D Bone Tissue [J].
Byambaa, Batzaya ;
Annabi, Nasim ;
Yue, Kan ;
Trujillo-de Santiago, Grissel ;
Moises Alvarez, Mario ;
Jia, Weitao ;
Kazemzadeh-Narbat, Mehdi ;
Shin, Su Ryon ;
Tamayol, Ali ;
Khademhosseini, Ali .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (16)
[6]   Evaluation of Fibrin-Agarose Tissue-Like Hydrogels Biocompatibility for Tissue Engineering Applications [J].
Campos, Fernando ;
Bonhome-Espinosa, Ana Belen ;
Chato-Astrain, Jesus ;
Sanchez-Porras, David ;
Garcia-Garcia, Oscar Dario ;
Carmona, Ramon ;
Lopez-Lopez, Modesto T. ;
Alaminos, Miguel ;
Carriel, Victor ;
Rodriguez, Ismael A. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[7]   Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration [J].
Celikkin, Nehar ;
Mastrogiacomo, Simone ;
Jaroszewicz, Jakub ;
Walboomers, X. Frank ;
Swieszkowski, Wojciech .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (01) :201-209
[8]   Proanthocyanidin-crosslinked collagen/konjac glucomannan hydrogel with improved mechanical properties and MRI trackable biodegradation for potential tissue engineering scaffolds [J].
Chen, Jinlin ;
Cai, Zhongyuan ;
Wei, Qingrong ;
Wang, Dan ;
Wu, Jun ;
Tan, Yanfei ;
Lu, Jian ;
Ai, Hua .
JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (02) :316-331
[9]   3D-printed gelatin methacrylate (GelMA)/silanated silica scaffold assisted by two-stage cooling system for hard tissue regeneration [J].
Choi, Eunjeong ;
Kim, Dongyun ;
Kang, Donggu ;
Yang, Gi Hoon ;
Jung, Bongsu ;
Yeo, MyungGu ;
Park, Min-Jeong ;
An, SangHyun ;
Lee, KyoungHo ;
Kim, Jun Sik ;
Kim, Jong Chul ;
Jeong, Woonhyeok ;
Yoo, Hye Hyun ;
Jeon, Hojun .
REGENERATIVE BIOMATERIALS, 2021, 8 (02)
[10]   3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation [J].
Costantini, Marco ;
Idaszek, Joanna ;
Szoke, Krisztina ;
Jaroszewicz, Jakub ;
Dentini, Mariella ;
Barbetta, Andrea ;
Brinchmann, Jan E. ;
Swieszkowski, Wojciech .
BIOFABRICATION, 2016, 8 (03)