Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7

被引:237
作者
Lin, RT
Génin, P
Mamane, Y
Hiscott, J
机构
[1] McGill Univ, Lady Davis Inst Med Res, Terry Fox Mol Oncol Grp, Montreal, PQ H3T 1E2, Canada
[2] McGill Univ, Dept Microbiol & Immunol, Montreal, PQ H3T 1E2, Canada
[3] McGill Univ, Dept Med, Montreal, PQ H3T 1E2, Canada
关键词
D O I
10.1128/MCB.20.17.6342-6353.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies implicate the interferon (IFN) regulatory factors (IRF) IRF-3 and IRF-7 as key activators of the alpha/beta IFN (IFN-alpha/beta) genes as well as the RANTES chemokine gene. Using coexpression analysis, the human IFNB, IFNA1, and RANTES promoters were stimulated by IRF-3 coexpression, whereas the IFNA4, IFNA7, and IFNA14 promoters were preferentially induced by IRF-7 only. Chimeric proteins containing combinations of different IRF-7 and IRF-3 domains were also tested, and the results provided evidence of distinct DNA binding properties of IRF-3 and IRF-7, as well as a preferential association of IRF-3 with the CREB binding protein (CBP) coactivator, Interestingly, some of these fusion proteins led to supraphysiological levels of IFN promoter activation. DNA binding site selection studies demonstrated that IRF-3 and IRF-7 bound to the 5'-GAAANNGAAANN-3' consensus motif found in many virus-inducible genes; however, a single nucleotide substitution in either of the GAAA half-site motifs eliminated IRF-3 binding and transactivation activity but did not affect IRF-7 interaction or transactivation activity. These studies demonstrate that IRF-3 possesses a restricted DNA binding site specificity and interacts with CBP, whereas IRF-7 has a broader DNA binding specificity that contributes to its capacity to stimulate delayed-type IFN gene expression. These results provide an explanation for the differential regulation of IFN-alpha/beta gene expression by IRF-3 and IRF-7 and suggest that these factors have complementary rather than redundant roles in the activation of the IFN-alpha/beta genes.
引用
收藏
页码:6342 / 6353
页数:12
相关论文
共 48 条
[1]   Characterization of the interferon regulatory factor-7 and its potential role in the transcription activation of interferon A genes [J].
Au, WC ;
Moore, PA ;
LaFleur, DW ;
Tombal, B ;
Pitha, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (44) :29210-29217
[2]   IDENTIFICATION OF A MEMBER OF THE INTERFERON REGULATORY FACTOR FAMILY THAT BINDS TO THE INTERFERON-STIMULATED RESPONSE ELEMENT AND ACTIVATES EXPRESSION OF INTERFERON-INDUCED GENES [J].
AU, WC ;
MOORE, PA ;
LOWTHER, W ;
JUANG, YT ;
PITHA, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11657-11661
[3]   Type I interferon gene expression:: Differential expression of IFN-A genes induced by viruses and double-stranded RNA [J].
Bragança, J ;
Civas, A .
BIOCHIMIE, 1998, 80 (8-9) :673-687
[4]  
Burysek L, 1999, J HUMAN VIROL, V2, P19
[5]   ASSEMBLY OF RECOMBINANT TFIID REVEALS DIFFERENTIAL COACTIVATOR REQUIREMENTS FOR DISTINCT TRANSCRIPTIONAL ACTIVATORS [J].
CHEN, JL ;
ATTARDI, LD ;
VERRIJZER, CP ;
YOKOMORI, K ;
TJIAN, R .
CELL, 1994, 79 (01) :93-105
[6]   JAK-STAT PATHWAYS AND TRANSCRIPTIONAL ACTIVATION IN RESPONSE TO IFNS AND OTHER EXTRACELLULAR SIGNALING PROTEINS [J].
DARNELL, JE ;
KERR, IM ;
STARK, GR .
SCIENCE, 1994, 264 (5164) :1415-1421
[7]   TAF(11)250 is a bipartite protein kinase that phosphorylates the basal transcription factor RAP74 [J].
Dikstein, R ;
Ruppert, S ;
Tjian, R .
CELL, 1996, 84 (05) :781-790
[8]   Structure of IRF-1 with bound DNA reveals determinants of interferon regulation [J].
Escalante, CR ;
Yie, JM ;
Thanos, D ;
Aggarwal, AK .
NATURE, 1998, 391 (6662) :103-106
[9]   Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y) [J].
Falvo, JV ;
Thanos, D ;
Maniatis, T .
CELL, 1995, 83 (07) :1101-1111
[10]   Crystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences [J].
Fujii, Y ;
Shimizu, T ;
Kusumoto, M ;
Kyogoku, Y ;
Taniguchi, T ;
Hakoshima, T .
EMBO JOURNAL, 1999, 18 (18) :5028-5041