Computation on elliptic curves with complex multiplication

被引:27
作者
Clark, Pete L. [1 ]
Corn, Patrick [2 ]
Rice, Alex [3 ]
Stankewicz, James [4 ]
机构
[1] Univ Georgia, Athens, GA 30602 USA
[2] Virtu Financial, Austin, TX 78746 USA
[3] Bucknell Univ, Lewisburg, PA 17837 USA
[4] Univ Copenhagen, DK-2100 Copenhagen, Denmark
关键词
INTEGRAL J-INVARIANT; TORSION POINTS; BOUNDS;
D O I
10.1112/S1461157014000072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the complete list of possible torsion subgroups of elliptic curves with complex multiplication over number fields of degree 1-13. Additionally we describe the algorithm used to compute these torsion subgroups and its implementation.
引用
收藏
页码:509 / 535
页数:27
相关论文
共 25 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1991, ENCY MATH SCI
[3]  
[Anonymous], 1934, Q J MATH OXFORD SER
[4]  
Bosch S., 1990, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) Results in Mathematics and Related Areas (3), V21
[5]  
Bosma W., 1997, J SYMB COMPUT, V24, P3, DOI DOI 10.1006/JSC0.1996.0125
[6]   TORSION POINTS ON ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION (WITH AN APPENDIX BY ALEX RICE) [J].
Clark, Pete L. ;
Cook, Brian ;
Stankewicz, James .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (02) :447-479
[7]  
Cox D., 1989, Primes of the Form x2 + ny2: Fermat, Class Field Theory and Complex Multiplication
[8]   TORSION GROUPS OF ELLIPTIC-CURVES WITH INTEGRAL J-INVARIANT OVER PURE CUBIC FIELDS [J].
FUNG, GW ;
STROHER, H ;
WILLIAMS, HC ;
ZIMMER, HG .
JOURNAL OF NUMBER THEORY, 1990, 36 (01) :12-45
[9]  
Grenet B, 2010, LECT NOTES COMPUT SC, V6281, P477, DOI 10.1007/978-3-642-15155-2_42
[10]   TORSION POINTS ON ELLIPTIC-CURVES OVER ALL QUADRATIC FIELDS [J].
KAMIENNY, S .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (01) :157-162