New Algorithms for Solving Nonlinear Eigenvalue Problems

被引:2
作者
Gander, W. [1 ,2 ]
机构
[1] ETH, CH-8092 Zurich, Switzerland
[2] Hong Kong Baptist Univ, Hong Kong, Peoples R China
关键词
nonlinear eigenvalue problem; third order methods; algorithmic differentiation;
D O I
10.1134/S0965542521050092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To solve a nonlinear eigenvalue problem we develop algorithms which compute zeros of A(lambda) = 0 We show how to apply third order iteration methods for that purpose. The necessary derivatives of the determinant are computed by algorithmic differentiation. Since many nonlinear eigenvalue problems have banded matrices we also present an algorithm which makes use of their structure.
引用
收藏
页码:761 / 773
页数:13
相关论文
共 11 条
[1]   SOLVING NONLINEAR EIGENVALUE PROBLEMS BY ALGORITHMIC DIFFERENTIATION [J].
ARBENZ, P ;
GANDER, W .
COMPUTING, 1986, 36 (03) :205-215
[2]  
Betcke T., 2011, COLLECTION NONLINEAR
[3]   NLEVP: A Collection of Nonlinear Eigenvalue Problems [J].
Betcke, Timo ;
Higham, Nicholas J. ;
Mehrmann, Volker ;
Schroeder, Christian ;
Tisseur, Francoise .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02)
[4]   Normwise scaling of second order polynomial matrices [J].
Fan, HY ;
Lin, WW ;
Van Dooren, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :252-256
[5]   ON HALLEY ITERATION METHOD [J].
GANDER, W .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02) :131-134
[6]  
Gander W., 2014, SCI COMPUTING AN INT, DOI [10.1007/978-3-319-04325-8, DOI 10.1007/978-3-319-04325-8, 10. 1007/978-3-319-04325-8]
[7]  
Gander W, 2010, MATRIX METHODS THEOR
[8]  
HANSEN E, 1977, NUMER MATH, V27, P257, DOI 10.1007/BF01396176
[9]   Scaling, sensitivity and stability in the numerical solution of quadratic eigenvalue problems [J].
Higham, Nicholas J. ;
Mackey, D. Steven ;
Tisseur, Francoise ;
Garvey, Seamus D. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 73 (03) :344-360
[10]  
Maehly H.J., 1954, Z. Angew. Math. Phys, V5, P260, DOI 10.1007/BF01600333