Approximating MAX SAT by moderately exponential and parameterized algorithms

被引:7
作者
Escoffier, Bruno [1 ,2 ]
Paschos, Vangelis Th. [3 ,4 ]
Tourniaire, Emeric [3 ]
机构
[1] Univ Paris 04, UPMC, LIP6, F-75005 Paris, France
[2] CNRS, UMR 7606, LIP6, F-75005 Paris, France
[3] PSL Res Univ, Univ Paris 09, LAMSADE, CNRS,UMR 7243, Paris, France
[4] Inst Univ France, Paris, France
关键词
Maximum satisfiability; Exponential time algorithms; Approximation algorithms; SET;
D O I
10.1016/j.tcs.2014.10.039
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study approximation of the MAX SAT problem by moderately exponential algorithms. The general goal of the issue of moderately exponential approximation is to catch-up on polynomial inapproximability, by providing algorithms achieving, with worst-case running times importantly smaller than those needed for exact computation, approximation ratios unachievable in polynomial time. We develop several approximation techniques that can be applied to MAX SAT in order to get approximation ratios arbitrarily close to 1. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 157
页数:11
相关论文
共 22 条
  • [1] [Anonymous], P 29 ANN ACM S THEOR
  • [2] [Anonymous], 1998, HDB COMBINATORIAL OP, DOI DOI 10.1007/978-1-4613-0303-9
  • [3] [Anonymous], 1999, COMPLEXITY APPROXIMA
  • [4] Avidor A, 2006, LECT NOTES COMPUT SC, V3879, P27
  • [5] Bjorklund A., 2010, P 51 ANN IEEE S FDN, P173, DOI DOI 10.1109/FOCS.2010.24
  • [6] SET PARTITIONING VIA INCLUSION-EXCLUSION
    Bjorklund, Andreas
    Husfeldt, Thore
    Koivisto, Mikko
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (02) : 546 - 563
  • [7] Efficient approximation of MIN SET COVER by moderately exponential algorithms
    Bourgeois, N.
    Escoffier, B.
    Paschos, V. Th.
    [J]. THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 2184 - 2195
  • [8] Approximation of MAX INDEPENDENT SET, MIN VERTEX COVER and related problems by moderately exponential algorithms
    Bourgeois, Nicolas
    Escoffier, Bruno
    Paschos, Vangelis Th.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) : 1954 - 1970
  • [9] Approximation of MIN COLORING by moderately exponential algorithms
    Bourgeois, Nicolas
    Escoffier, Bruno
    Paschos, Vangelis Th.
    [J]. INFORMATION PROCESSING LETTERS, 2009, 109 (16) : 950 - 954
  • [10] Cai LM, 2006, LECT NOTES COMPUT SC, V4169, P96