Systematic evaluation of parameters for genome-scale metabolic models of cultured mammalian cells

被引:17
作者
Schinn, Song-Min [1 ]
Morrison, Carly [2 ]
Wei, Wei [2 ]
Zhang, Lin [2 ]
Lewis, Nathan E. [1 ,3 ,4 ]
机构
[1] Univ Calif San Diego, Dept Pediat, San Diego, CA 92103 USA
[2] Pfizer, Biotherapeut Pharmaceut Sci, Andover, MA USA
[3] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
[4] Novo Nordisk Fdn Ctr Biosustainabil UC, San Diego, CA USA
关键词
Chinese Hamster Ovary cells; Flux Balance Analysis; Metabolic Network Modeling; Bioprocess; HAMSTER OVARY CELLS; CONSTRAINT-BASED MODELS; FED-BATCH CULTURES; ESCHERICHIA-COLI; CHO-CELLS; FLUX ANALYSIS; OBJECTIVE FUNCTIONS; BIOMASS COMPOSITION; BALANCE; GROWTH;
D O I
10.1016/j.ymben.2021.03.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Genome-scale metabolic models describe cellular metabolism with mechanistic detail. Given their high complexity, such models need to be parameterized correctly to yield accurate predictions and avoid overfitting. Effective parameterization has been well-studied for microbial models, but it remains unclear for higher eukaryotes, including mammalian cells. To address this, we enumerated model parameters that describe key features of cultured mammalian cells-including cellular composition, bioprocess performance metrics, mammalian-specific pathways, and biological assumptions behind model formulation approaches. We tested these parameters by building thousands of metabolic models and evaluating their ability to predict the growth rates of a panel of phenotypically diverse Chinese Hamster Ovary cell clones. We found the following considerations to be most critical for accurate parameterization: (1) cells limit metabolic activity to maintain homeostasis, (2) cell morphology and viability change dynamically during a growth curve, and (3) cellular biomass has a particular macromolecular composition. Depending on parameterization, models predicted different metabolic phenotypes, including contrasting mechanisms of nutrient utilization and energy generation, leading to varying accuracies of growth rate predictions. Notably, accurate parameter values broadly agreed with experimental measurements. These insights will guide future investigations of mammalian metabolism.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 101 条
[1]   Model-based tools for optimal experiments in bioprocess engineering [J].
Abt, Vinzenz ;
Barz, Tilman ;
Cruz-Bournazou, Mariano Nicolas ;
Herwig, Christoph ;
Kroll, Paul ;
Moeller, Johannes ;
Poertner, Ralf ;
Schenkendorf, Rene .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2018, 22 :244-252
[2]   Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry [J].
Ahn, Woo Suk ;
Antoniewicz, Maciek R. .
METABOLIC ENGINEERING, 2011, 13 (05) :598-609
[3]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[4]   A systems approach reveals distinct metabolic strategies among the NCI-60 cancer cell lines [J].
Aurich, Maike K. ;
Fleming, Ronan M. T. ;
Thiele, Ines .
PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (08) :e1005698
[5]   Metabolic engineering of Chinese hamster ovary cells: Towards a bioengineered heparin [J].
Baik, Jong Youn ;
Gasimli, Leyla ;
Yang, Bo ;
Datta, Payel ;
Zhang, Fuming ;
Glass, Charles A. ;
Esko, Jeffrey D. ;
Linhardt, Robert J. ;
Sharfstein, Susan T. .
METABOLIC ENGINEERING, 2012, 14 (02) :81-90
[6]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[7]   Measuring Cellular Biomass Composition for Computational Biology Applications [J].
Beck, Ashley E. ;
Hunt, Kristopher A. ;
Carlson, Ross P. .
PROCESSES, 2018, 6 (05)
[8]   Integration of expression data in genome-scale metabolic network reconstructions [J].
Blazier, Anna S. ;
Papin, Jason A. .
FRONTIERS IN PHYSIOLOGY, 2012, 3
[9]   Flux analysis of underdetermined metabolic networks: The quest for the missing constraints [J].
Bonarius, HPJ ;
Schmid, G ;
Tramper, J .
TRENDS IN BIOTECHNOLOGY, 1997, 15 (08) :308-314
[10]   Using the reconstructed genome-scale human metabolic network to study physiology and pathology [J].
Bordbar, A. ;
Palsson, B. O. .
JOURNAL OF INTERNAL MEDICINE, 2012, 271 (02) :131-141