Fractal Dimension for IFS-Attractors Revisited

被引:4
作者
Fernandez-Martinez, M. [1 ]
Guirao, J. L. G. [2 ]
Vera Lopez, Juan Antonio [1 ]
机构
[1] UPCT, MDE, Univ Ctr Def, Spanish Air Force Acad, Santiago De La Ribera 30720, Region De Murci, Spain
[2] Univ Politecn Cartagena, Hosp Marina, Dept Matemat Aplicada & Estadist, Cartagena 30203, Region De Murci, Spain
关键词
Fractal; Iterated function system; IFS-attractor; Self-similar set; Fractal structure; Box dimension; Hausdorff dimension; Open set condition; Moran's Theorem; SELF-SIMILAR SETS; HAUSDORFF DIMENSION; OVERLAPS; SPACES;
D O I
10.1007/s12346-018-0272-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the milestones in Fractal Geometry is the so-called Moran's Theorem, which allows the calculation of the similarity dimension of any strict self-similar set under the open set condition. In this paper, we contribute a generalized version of the Moran's theorem, which does not require the to be satisfied by the similitudes that give rise to the corresponding attractor. To deal with, two generalized versions for the classical fractal dimensions, namely, the box and the Hausdorff dimensions, are explored in terms of fractal structures, a kind of uniform spaces.
引用
收藏
页码:709 / 722
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1990, FRACTAL GEOMETRY
[2]   On the open set condition for self-similar fractals [J].
Bandt, C ;
Hung, NV ;
Rao, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (05) :1369-1374
[3]  
BANDT C, 1992, FUND MATH, V141, P257
[4]   Hausdorff dimension of self-similar sets with overlaps [J].
Deng QiRong ;
Harding, John ;
Hu TianYou .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (01) :119-128
[5]   How to calculate the Hausdorff dimension using fractal structures [J].
Fernandez-Martinez, M. ;
Sanchez-Granero, M. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 :116-131
[6]   Fractal dimension for fractal structures [J].
Fernandez-Martinez, M. ;
Sanchez-Granero, M. A. .
TOPOLOGY AND ITS APPLICATIONS, 2014, 163 :93-111
[7]   Fractal dimension for fractal structures: A Hausdorff approach revisited [J].
Fernandez-Martinez, M. ;
Sanchez-Granero, M. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (01) :321-330
[8]   Fractal dimension for fractal structures: A Hausdorff approach [J].
Fernandez-Martinez, M. ;
Sanchez-Granero, M. A. .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) :1825-1837
[9]  
Fernandez-Martinez M, 2013, TRINIDAD FRACTAL DIM
[10]  
Fernndez-Martnez M., 2016, Appl Math Nonlinear Sci, V1, P437, DOI [10.21042/amns.2016.2.00037, DOI 10.21042/AMNS.2016.2.00037, 10.21042/AMNS.2016.2.00037]