Deformation quantization of Leibniz algebras

被引:22
作者
Dherin, Benoit [1 ]
Wagemann, Friedrich [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] Univ Nantes, F-44035 Nantes, France
关键词
Leibniz algebra; Integration; BCH-formula; Deformation quantization; Non-skew-symmetric Poisson manifolds; POISSON; BRACKETS;
D O I
10.1016/j.aim.2014.10.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the local integration of a Leibniz algebra l) using a Baker-Campbell-Hausdorff type formula in order to deformation quantize its linear dual h*. More precisely, we define a natural rack product on the set of exponential functions on h* which extends to a rack action on C-infinity (h*). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 48
页数:28
相关论文
共 22 条
[1]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[2]  
Ben Amar N, 2003, J LIE THEORY, V13, P329
[3]   A comparison between Rieffel's and Kontsevich's deformation quantizations for linear poisson tensors [J].
Ben Amar, Nabiha .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 229 (01) :1-24
[4]  
Canez S., 2011, THESIS U CALIFORNIA
[5]  
Cattaneo A. S., SYMPLECTIC MIC UNPUB
[6]  
Cattaneo AS, 2013, J SYMPLECT GEOM, V11, P319
[7]   Symplectic microgeometry II: generating functions [J].
Cattaneo, Alberto S. ;
Dherin, Benoit ;
Weinstein, Alan .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (04) :507-536
[8]  
Cattaneo AS, 2010, J SYMPLECT GEOM, V8, P205
[9]   Formal symplectic groupoid [J].
Cattaneo, AS ;
Dherin, B ;
Felder, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (03) :645-674
[10]  
Covez S, 2013, ANN I FOURIER, V63, P1