WEIGHTED NORM INEQUALITIES FOR BILINEAR FOURIER MULTIPLIER OPERATORS

被引:1
|
作者
Hu, Guoen [1 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Dept Appl Math, POB 1001-745, Zhengzhou 450002, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Bilinear Fourier multiplier; weighted estimate; Sobolev regularity; bilinear singular integral;
D O I
10.7153/mia-18-110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by kernel estimates of the bilinear Fourier multiple operator and the weighted theory for the bilinear singular integral operators, some weighted norm inequality with general weights are established for the biilinear Fourier multiplier operators.
引用
收藏
页码:1409 / 1425
页数:17
相关论文
共 50 条
  • [31] Toeplitz operators and weighted norm inequalities on the bidisc
    Nakazi, T
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03): : 429 - 441
  • [32] WEIGHTED NORM INEQUALITIES FOR OPERATORS OF HARDY TYPE
    BLOOM, S
    KERMAN, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (01) : 135 - 141
  • [33] Weighted Norm Inequalities for Fractional Bergman Operators
    Benoît F. Sehba
    Constructive Approximation, 2020, 51 : 225 - 245
  • [34] INEQUALITIES INVOLVING NORM AND ESSENTIAL NORM OF WEIGHTED COMPOSITION OPERATORS
    Sharma, Ajay K.
    Bhat, Ambika
    Chugh, Renu
    Subhadarsini, Elina
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (01): : 225 - 240
  • [35] ON THE BILINEAR SQUARE FOURIER MULTIPLIER OPERATORS ASSOCIATED WITH gλ* FUNCTION
    Li, Zhengyang
    Xue, Qingying
    NAGOYA MATHEMATICAL JOURNAL, 2020, 239 : 123 - 152
  • [36] Bilinear Weighted Inequalities with Two-Dimensional Operators
    Stepanov, V. D.
    Shambilova, G. E.
    DOKLADY MATHEMATICS, 2020, 102 (02) : 406 - 408
  • [37] Bilinear Weighted Inequalities with Two-Dimensional Operators
    V. D. Stepanov
    G. E. Shambilova
    Doklady Mathematics, 2020, 102 : 406 - 408
  • [38] Weighted Morrey Estimates for Multilinear Fourier Multiplier Operators
    Wang, Songbai
    Jiang, Yinsheng
    Li, Peng
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [39] Some Weighted Estimates for Multilinear Fourier Multiplier Operators
    Si, Zengyan
    ABSTRACT AND APPLIED ANALYSIS, 2013,