Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors

被引:45
作者
Banuls, Maria-Jose [1 ]
Gonzalez-Pedro, Victoria [1 ]
Barrios, Carlos A. [2 ]
Puchades, Rosa [1 ]
Maquieira, Angel [1 ]
机构
[1] Univ Politecn Valencia, Inst Reconocimiento Mol & Desarrollo Tecnol, Dept Quim, Valencia 46022, Spain
[2] Univ Politecn Madrid, Inst Sistemas Optoelect & Microtecnol, ETSI Telecomunicac, E-28040 Madrid, Spain
关键词
Nanobiosensor; Silicon nitride; Selective chemical derivatization; Label-free detection; NITRIDE SURFACES; CRYSTALLINE SILICON; TERMINATED SILICON; MONOLAYERS; PROBE; FUNCTIONALIZATION; DNA;
D O I
10.1016/j.bios.2009.10.048
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The selective introduction of functional groups on the surface of silicon nitride/silicon oxide nanostructures was studied. Chemical strategies based on organosilane, Si-H and N-H reactivities were assayed. Among these strategies, the use of glutaraldehyde to selectively immobilize biomolecules only on the silicon nitride part of the chip surface was the most effective for the covalent attachment of proteins, maintaining also their bioavailability. The biomolecule surface coverage results up to 80% and the modification is selective versus silicon oxide; the biomolecule attaching only to silicon nitride and leaving the silicon oxide area of the device unmodified. The effectiveness of our novel selective surface modification procedure is also supported by comparing experimental and numerical calculations of the optical performance of a label-free optical ring resonator based on Si3N4/SiO2 slot-waveguides. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1460 / 1466
页数:7
相关论文
共 28 条
[1]   Tailor-made functionalization of silicon nitride surfaces [J].
Arafat, A ;
Schroën, K ;
de Smet, LCPM ;
Sudhölter, EJR ;
Zuilhof, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (28) :8600-8601
[2]   Covalent biofunctionalization of silicon nitride surfaces [J].
Arafat, Ahmed ;
Giesbers, Marcel ;
Rosso, Michel ;
Sudhoelter, Ernst J. R. ;
Schroen, Karin ;
White, Richard G. ;
Yang, Li ;
Linford, Matthew R. ;
Zuilhof, Han .
LANGMUIR, 2007, 23 (11) :6233-6244
[3]   Analytical nanobiotechnology for medicine diagnostics [J].
Archakov, A. I. ;
Ivanov, Yu. D. .
MOLECULAR BIOSYSTEMS, 2007, 3 (05) :336-342
[4]  
BARRIOS CA, 2009, P SPIE, V7356
[5]   Label-free optical biosensing with slot-waveguides [J].
Barrios, Carlos A. ;
Banuls, Maria Jose ;
Gonzalez-Pedro, Victoria ;
Gylfason, Kristinn B. ;
Sanchez, Benito ;
Griol, Amadeu ;
Maquieira, A. ;
Sohlstrom, H. ;
Holgado, M. ;
Casquel, R. .
OPTICS LETTERS, 2008, 33 (07) :708-710
[6]   Slot-waveguide biochemical sensor [J].
Barrios, Carlos A. ;
Gylfason, Kristinn B. ;
Sanchez, Benito ;
Griol, Amadeu ;
Sohlstroem, H. ;
Holgado, M. ;
Casquel, R. .
OPTICS LETTERS, 2007, 32 (21) :3080-3082
[7]   Early stages of protein crystallization as revealed by emerging optical waveguide technology [J].
Boudjemline, Attia ;
Clarke, David T. ;
Freeman, Neville J. ;
Nicholson, James M. ;
Jones, Gareth R. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 :523-530
[8]   Chemical reactivity of hydrogen-terminated crystalline silicon surfaces [J].
Boukherroub, Rabah .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2005, 9 (1-2) :66-72
[9]   Organometallic chemistry on silicon and germanium surfaces [J].
Buriak, JM .
CHEMICAL REVIEWS, 2002, 102 (05) :1271-1308
[10]   The use of biosensors for microaffinity purification: an integrated approach to proteomics [J].
Catimel, B ;
Rothacker, J ;
Nice, E .
JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, 2001, 49 (1-3) :289-312