The overpartition function modulo small powers of 2

被引:82
作者
Mahlburg, K [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
overpartition; congruence;
D O I
10.1016/j.disc.2004.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper, Fortin et al. (Jagged Partitions, arXivmath. CO/0310079, 2003) found congruences modulo powers of 2 for the values of the overpartition function (p) over bar (n) in arithmetic progressions. The moduli for these congruences ranged as high as 64. This note shows that (p) over bar (n) equivalent to 0 (mod 64) for a set of integers of arithmetic density 1. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 267
页数:5
相关论文
共 13 条
[1]  
Andrews G., 1998, THEORY PARTITIONS
[2]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[3]   Frobenius partitions and the combinatorics of Ramanujan's 1ψ1 summation [J].
Corteel, S ;
Lovejoy, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (01) :177-183
[4]   Particle seas and basic hypergeometric series [J].
Corteel, S .
ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (01) :199-214
[5]  
FORTIN JF, 2003, ARXIVMATHCO0310079
[6]  
Gordon B., 1997, Ramanujan J, V1, P25, DOI DOI 10.1023/A:1009711020492
[7]  
Grosswald E., 1985, REPRESENTATIONS INTE, DOI DOI 10.1007/978-1-4613-8566-0
[8]  
Hardy GH., 1940, Ramanujan
[9]  
Hardy GodfreyHarold., 1979, An Introduction to the Theory of Numbers, V5
[10]   Gordon's theorem for overpartitions [J].
Lovejoy, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (02) :393-401