Frames and bases in tensor products of Hilbert spaces and Hilbert C*-modules

被引:27
作者
Khosravi, Amir
Khosravi, Behrooz
机构
[1] Univ Teacher Educ, Fac Math Sci & Comp Engn, Tehran 15614, Iran
[2] Amirkabir Univ Technol, Dept Pure Math, Fac Math & Comp Sci, Tehran 15914, Iran
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2007年 / 117卷 / 01期
关键词
frame; frame operator; tensor product; Hilbert C*-module;
D O I
10.1007/s12044-007-0001-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study tensor product of Hilbert C*-modules and Hilbert spaces. We show that if E is a Hilbert A-module and F is a Hilbert B-module, then tensor product of frames (orthonormal bases) for E and F produce frames (orthonormal bases) for Hilbert A circle times B-module E circle times F, and we get more results. For Hilbert spaces H and K, we study tensor product of frames of subspaces for H and K, tenser product of resolutions of the identities of H and K, and tensor product of frame representations for H and K.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 19 条
[1]   Geometric aspects of frame representations of abelian groups [J].
Aldroubi, A ;
Larson, D ;
Tang, WS ;
Weber, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (12) :4767-4786
[2]  
Bakic D., 2002, ACTA SCI MATH, V68, P249
[3]   The art of frame theory [J].
Casazza, PG .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :129-201
[4]  
CASAZZA RG, 2004, CONT MATH, V345, P87
[5]  
Christensen O., 2003, An Introduction to Frames and Riesz Bases, DOI [10.1007/978-0-8176-8224-8, DOI 10.1007/978-0-8176-8224-8]
[6]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[7]   A CLASS OF NONHARMONIC FOURIER SERIES [J].
DUFFIN, RJ ;
SCHAEFFER, AC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :341-366
[8]  
Folland G.B., 1995, COURSE ABSTRACT HARM
[9]  
FORNASIER M, 2003, P INT C CONSTR FUNCT
[10]  
Frank M, 2002, J OPERAT THEOR, V48, P273