Voltage-dependent spin flip in magnetically substituted graphene nanoribbons: Towards the realization of graphene-based spintronic devices

被引:12
作者
Houchins, Gregory [1 ]
Crook, Charles B. [1 ]
Zhu, Jian-Xin [2 ,3 ]
Balatsky, Alexander V. [4 ,5 ]
Haraldsen, Jason T. [1 ,6 ]
机构
[1] James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22802 USA
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Inst Mat Sci, Los Alamos, NM 87545 USA
[5] NORDITA, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[6] Univ North Florida, Dept Phys, Jacksonville, FL 32224 USA
关键词
SINGLE; FUNDAMENTALS; TRANSITION; METAL; ATOM;
D O I
10.1103/PhysRevB.95.155450
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We examine the possibility of using graphene nanoribbons (GNRs) with directly substituted chromium atoms as a spintronic device. Using density functional theory, we simulate a voltage bias across a constructed GNR in a device setup where a magnetic dimer has been substituted into the lattice. Through this first-principles approach, we calculate the electronic and magnetic properties as a function of Hubbard U, voltage, and magnetic configurations. By calculating the total energy of each magnetic configuration, we determine that the initial antiferromagnetic ground state flips to a ferromagnetic state with applied bias. Mapping this transition point to the calculated conductance for the system reveals that there is a distinct change in conductance through the GNR, which indicates the possibility of a spin valve. We also show that this corresponds to a distinct shift in the induced magnetization within graphene.
引用
收藏
页数:6
相关论文
共 47 条
[1]  
Awschalom DD, 2002, NANOSCI TECHNOL, P147
[2]   Spintronics [J].
Bader, S. D. ;
Parkin, S. S. P. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :71-88
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Molecular spintronics using single-molecule magnets [J].
Bogani, Lapo ;
Wernsdorfer, Wolfgang .
NATURE MATERIALS, 2008, 7 (03) :179-186
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (03)
[7]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[10]   Proximity-induced magnetism in transition-metal substituted graphene [J].
Crook, Charles B. ;
Constantin, Costel ;
Ahmed, Towfiq ;
Zhu, Jian-Xin ;
Balatsky, Alexander V. ;
Haraldsen, Jason T. .
SCIENTIFIC REPORTS, 2015, 5