Patch-Based Generative Adversarial Network Towards Retinal Vessel Segmentation

被引:6
作者
Abbas, Waseem [1 ]
Shakeel, Muhammad Haroon [2 ]
Khurshid, Numan [2 ]
Taj, Murtaza [2 ]
机构
[1] Mentor, Cloud Applicat Solut Div, Lahore, Pakistan
[2] Lahore Univ Management Sci LUMS, Syed Babar Ali Sch Sci & Engn, Dept Comp Sci, Lahore, Pakistan
来源
NEURAL INFORMATION PROCESSING (ICONIP 2019), PT IV | 2019年 / 1142卷
关键词
Deep Learning; Generative Adversarial Network; Segmentation; Retinal Vessels; BLOOD-VESSELS; MATCHED-FILTER; IMAGES; EXTRACTION;
D O I
10.1007/978-3-030-36808-1_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinal blood vessels are considered to be the reliable diagnostic biomarkers of ophthalmologic and diabetic retinopathy. Monitoring and diagnosis totally depends on expert analysis of both thin and thick retinal vessels which has recently been carried out by various artificial intelligent techniques. Existing deep learning methods attempt to segment retinal vessels using a unified loss function optimized for both thin and thick vessels with equal importance. Due to variable thickness, biased distribution, and difference in spatial features of thin and thick vessels, unified loss function are more influential towards identification of thick vessels resulting in weak segmentation. To address this problem, a conditional patch-based generative adversarial network is proposed which utilizes a generator network and a patch-based discriminator network conditioned on the sample data with an additional loss function to learn both thin and thick vessels. Experiments are conducted on publicly available STARE and DRIVE datasets which show that the proposed model outperforms the state-of-the-art methods.
引用
收藏
页码:49 / 56
页数:8
相关论文
共 25 条
[1]  
Abbas W, 2019, INT CONF ACOUST SPEE, P1408, DOI 10.1109/ICASSP.2019.8683776
[2]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[3]   Trainable COSFIRE filters for vessel delineation with application to retinal images [J].
Azzopardi, George ;
Strisciuglio, Nicola ;
Vento, Mario ;
Petkov, Nicolai .
MEDICAL IMAGE ANALYSIS, 2015, 19 (01) :46-57
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Dasgupta A, 2017, I S BIOMED IMAGING, P248, DOI 10.1109/ISBI.2017.7950512
[6]   An approach to localize the retinal blood vessels using bit planes and centerline detection [J].
Fraz, M. M. ;
Barman, S. A. ;
Remagnino, P. ;
Hoppe, A. ;
Basit, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (02) :600-616
[7]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[8]   An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation [J].
Fraz, Muhammad Moazam ;
Remagnino, Paolo ;
Hoppe, Andreas ;
Uyyanonvara, Bunyarit ;
Rudnicka, Alicja R. ;
Owen, Christopher G. ;
Barman, Sarah A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (09) :2538-2548
[9]   RETINAL VESSEL SEGMENTATION VIA DEEP LEARNING NETWORK AND FULLY-CONNECTED CONDITIONAL RANDOM FIELDS [J].
Fu, Huazhu ;
Xu, Yanwu ;
Wong, Damon Wing Kee ;
Liu, Jiang .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :698-701
[10]   Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response [J].
Hoover, A ;
Kouznetsova, V ;
Goldbaum, M .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (03) :203-210