Variability of wood properties using airborne and terrestrial laser scanning

被引:38
|
作者
Pyorala, Jiri [1 ,2 ,3 ]
Saarinen, Ninni [1 ,3 ,4 ]
Kankare, Ville [1 ,3 ,4 ]
Coops, Nicholas C. [5 ]
Liang, Xinlian [2 ,3 ]
Wang, Yunsheng [2 ,3 ]
Holopainen, Markus [1 ,3 ]
Hyyppa, Juha [2 ,3 ]
Vastaranta, Mikko [3 ,4 ]
机构
[1] Univ Helsinki, Dept Forest Sci, BoPOB 27, FIN-00014 Helsinki, Finland
[2] Finnish Geospatial Res Inst, Dept Remote Sensing & Photograrranetry, Geodeetinrinne 2, Masala 02431, Finland
[3] Finnish Geospatial Res Inst, Ctr Excellence Laser Scanning Res, Geodeetinrinne 2, Masala 02431, Finland
[4] Univ Eastern Finland, Sch Forest Sci, POB 111, Joensuu 80101, Finland
[5] Univ British Columbia, Dept Forest Resources Management, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
基金
芬兰科学院;
关键词
Lidar; Data fusion; Precision forestry; Scots pine; SCOTS PINE; FIBER ATTRIBUTES; MECHANICAL-PROPERTIES; BRANCH DIAMETER; LODGEPOLE PINE; TIMBER QUALITY; NORWAY SPRUCE; DOUGLAS-FIR; TREE HEIGHT; CROWN RATIO;
D O I
10.1016/j.rse.2019.111474
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Information on wood properties is crucial in estimating wood quality and forest biomass and thus developing the precision and sustainability of forest management and use. However, wood properties are highly variable between and within trees due to the complexity of wood formation. Therefore, tree-specific field references and spatially transferable models are required to capture the variability of wood quality and forest biomass at multiple scales, entailing high-resolution terrestrial and aerial remote sensing methods. Here, we aimed at identifying select tree traits that indicate wood properties (i.e. wood quality indicators) with a combination of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) in an examination of 27 even-aged, managed Scots pine (Pinus sylvestris L.) stands in southern Finland. We derived the wood quality indicators from tree models sampled systematically from TLS data and built prediction models with respect to individual crown features delineated from ALS data. The models were incapable of predicting explicit branching parameters (height of the lowest dead branch R-2 = 0.25, maximum branch diameter R-2 = 0.03) but were suited to predicting stem and crown dimensions from stand, tree, and competition factors (diameter at breast height and sawlog volume R 2 = 0.5, and live crown base height R-2 = 0.4). We were able to identify the effect of canopy closure on crown longevity and stem growth, which are pivotal to the variability of several wood properties in managed forests. We discussed how the fusions of high-resolution remote sensing methods may be used to enhance sustainable management and use of natural resources in the changing environment.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Spatial variability of terrestrial laser scanning based leaf area index
    Zheng, Guang
    Moskal, L. Monika
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 19 : 226 - 237
  • [22] MULTISPECTRAL ANALYSIS OF INDIGENOUS ROCK ART USING TERRESTRIAL LASER SCANNING
    Skoog, B.
    Helmholz, P.
    Belton, D.
    XXIII ISPRS Congress, Commission V, 2016, 41 (B5): : 405 - 412
  • [23] Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland
    Goodwin, Nicholas R.
    Armston, John D.
    Muir, Jasmine
    Stiller, Issac
    GEOMORPHOLOGY, 2017, 282 : 195 - 208
  • [24] Determination of stand density using data from airborne laser scanning
    Sterenczak, Krzysztof
    SYLWAN, 2013, 157 (08): : 607 - 617
  • [25] International benchmarking of terrestrial laser scanning approaches for forest inventories
    Liang, Xinlian
    Hyyppa, Juha
    Kaartinen, Harri
    Lehtomaki, Matti
    Pyorala, Jiri
    Pfeifer, Norbert
    Holopainen, Markus
    Brolly, Gabor
    Pirotti, Francesco
    Hackenberg, Jan
    Huang, Huabing
    Jo, Hyun-Woo
    Katoh, Masato
    Liu, Luxia
    Mokros, Martin
    Morel, Jules
    Olofsson, Kenneth
    Poveda-Lopez, Jose
    Trochta, Jan
    Wang, Di
    Wang, Jinhu
    Xi, Zhouxi
    Yang, Bisheng
    Zheng, Guang
    Kankare, Ville
    Luoma, Ville
    Yu, Xiaowei
    Chen, Liang
    Vastaranta, Mikko
    Saarinen, Ninni
    Wang, Yunsheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 144 : 137 - 179
  • [26] Classification of airborne laser scanning data using JointBoost
    Huang, X. (hwangxf@gmail.com), 1600, Elsevier B.V., Netherlands (92): : 124 - 136
  • [27] A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data
    Crespo-Peremarch, Pablo
    Fournier, Richard A.
    Nguyen, Van-Tho
    van Lier, Olivier R.
    Angel Ruiz, Luis
    FOREST ECOLOGY AND MANAGEMENT, 2020, 473
  • [28] Detection of windthrown trees using airborne laser scanning
    Nystrom, Mattias
    Holmgren, Johan
    Fransson, Johan E. S.
    Olsson, Hakan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 30 : 21 - 29
  • [29] Classification of airborne laser scanning data using JointBoost
    Guo, Bo
    Huang, Xianfeng
    Zhang, Fan
    Sohn, Gunho
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2015, 100 : 71 - 83
  • [30] Prediction of forest canopy fuel parameters in managed boreal forests using multispectral and unispectral airborne laser scanning data and aerial images
    Maltamo, M.
    Raty, J.
    Korhonen, L.
    Kotivuori, E.
    Kukkonen, M.
    Peltola, H.
    Kangas, J.
    Packalen, P.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2020, 53 (01) : 245 - 257