Variability of wood properties using airborne and terrestrial laser scanning

被引:38
|
作者
Pyorala, Jiri [1 ,2 ,3 ]
Saarinen, Ninni [1 ,3 ,4 ]
Kankare, Ville [1 ,3 ,4 ]
Coops, Nicholas C. [5 ]
Liang, Xinlian [2 ,3 ]
Wang, Yunsheng [2 ,3 ]
Holopainen, Markus [1 ,3 ]
Hyyppa, Juha [2 ,3 ]
Vastaranta, Mikko [3 ,4 ]
机构
[1] Univ Helsinki, Dept Forest Sci, BoPOB 27, FIN-00014 Helsinki, Finland
[2] Finnish Geospatial Res Inst, Dept Remote Sensing & Photograrranetry, Geodeetinrinne 2, Masala 02431, Finland
[3] Finnish Geospatial Res Inst, Ctr Excellence Laser Scanning Res, Geodeetinrinne 2, Masala 02431, Finland
[4] Univ Eastern Finland, Sch Forest Sci, POB 111, Joensuu 80101, Finland
[5] Univ British Columbia, Dept Forest Resources Management, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
基金
芬兰科学院;
关键词
Lidar; Data fusion; Precision forestry; Scots pine; SCOTS PINE; FIBER ATTRIBUTES; MECHANICAL-PROPERTIES; BRANCH DIAMETER; LODGEPOLE PINE; TIMBER QUALITY; NORWAY SPRUCE; DOUGLAS-FIR; TREE HEIGHT; CROWN RATIO;
D O I
10.1016/j.rse.2019.111474
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Information on wood properties is crucial in estimating wood quality and forest biomass and thus developing the precision and sustainability of forest management and use. However, wood properties are highly variable between and within trees due to the complexity of wood formation. Therefore, tree-specific field references and spatially transferable models are required to capture the variability of wood quality and forest biomass at multiple scales, entailing high-resolution terrestrial and aerial remote sensing methods. Here, we aimed at identifying select tree traits that indicate wood properties (i.e. wood quality indicators) with a combination of terrestrial laser scanning (TLS) and airborne laser scanning (ALS) in an examination of 27 even-aged, managed Scots pine (Pinus sylvestris L.) stands in southern Finland. We derived the wood quality indicators from tree models sampled systematically from TLS data and built prediction models with respect to individual crown features delineated from ALS data. The models were incapable of predicting explicit branching parameters (height of the lowest dead branch R-2 = 0.25, maximum branch diameter R-2 = 0.03) but were suited to predicting stem and crown dimensions from stand, tree, and competition factors (diameter at breast height and sawlog volume R 2 = 0.5, and live crown base height R-2 = 0.4). We were able to identify the effect of canopy closure on crown longevity and stem growth, which are pivotal to the variability of several wood properties in managed forests. We discussed how the fusions of high-resolution remote sensing methods may be used to enhance sustainable management and use of natural resources in the changing environment.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review
    van Leeuwen, Martin
    Hilker, Thomas
    Coops, Nicholas C.
    Frazer, Gordon
    Wulder, Michael A.
    Newnham, Glenn J.
    Culvenor, Darius S.
    FOREST ECOLOGY AND MANAGEMENT, 2011, 261 (09) : 1467 - 1478
  • [2] Assessing branching structure for biomass and wood quality estimation using terrestrial laser scanning point clouds
    Pyorala, Jiri
    Liang, Xinlian
    Saarinen, Ninni
    Kankare, Ville
    Wang, Yunsheng
    Holopainen, Markus
    Hyyppa, Juha
    Vastaranta, Mikko
    CANADIAN JOURNAL OF REMOTE SENSING, 2018, 44 (05) : 462 - 475
  • [3] Estimation of stem attributes using a combination of terrestrial and airborne laser scanning
    Lindberg, Eva
    Holmgren, Johan
    Olofsson, Kenneth
    Olsson, Hakan
    EUROPEAN JOURNAL OF FOREST RESEARCH, 2012, 131 (06) : 1917 - 1931
  • [4] Detecting and characterizing downed dead wood using terrestrial laser scanning
    Yrttimaa, Tuomas
    Saarinen, Ninni
    Luoma, Ville
    Tanhuanpaa, Topi
    Kankare, Ville
    Liang, Xinlian
    Hyyppa, Juha
    Holopainen, Markus
    Vastaranta, Mikko
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 151 : 76 - 90
  • [5] Canopy clumping appraisal using terrestrial and airborne laser scanning
    Garcia, Mariano
    Gajardo, John
    Riano, David
    Zhao, Kaiguang
    Martin, Pilar
    Ustin, Susan
    REMOTE SENSING OF ENVIRONMENT, 2015, 161 : 78 - 88
  • [6] Mapping LAI in a Norway spruce forest using airborne laser scanning
    Solberg, Svein
    Brunner, Andreas
    Hanssen, Kjersti Holt
    Lange, Holger
    Naesset, Erik
    Rautiainen, Miina
    Stenberg, Pauline
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (11) : 2317 - 2327
  • [7] Assessing log geometry and wood quality in standing timber using terrestrial laser-scanning point clouds
    Pyorala, Jiri
    Kankare, Ville
    Liang, Xinlian
    Saarinen, Ninni
    Rikala, Juha
    Kivinen, Veli-Pekka
    Sipi, Marketta
    Holopainen, Markus
    Hyyppa, Juha
    Vastaranta, Mikko
    FORESTRY, 2019, 92 (02): : 177 - 187
  • [8] Single tree biomass modelling using airborne laser scanning
    Kankare, Ville
    Raety, Minna
    Yu, Xiaowei
    Holopainen, Markus
    Vastaranta, Mikko
    Kantola, Tuula
    Hyyppa, Juha
    Hyyppa, Hannu
    Alho, Petteri
    Viitala, Risto
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 85 : 66 - 73
  • [9] Comparison of airborne laser scanning, terrestrial laser scanning, and terrestrial photogrammetry for mapping differential slope change in mountainous terrain
    Lato, Matthew J.
    Hutchinson, D. Jean
    Gauthier, Dave
    Edwards, Thomas
    Ondercin, Matthew
    CANADIAN GEOTECHNICAL JOURNAL, 2015, 52 (02) : 129 - 140
  • [10] Modeling a new taper curve and form factor of tree branches using terrestrial laser scanning
    Bazezew, Muluken N.
    Fehrmann, Lutz
    Kleinn, Christoph
    Noelke, Nils
    FORESTRY, 2024,