What is the band alignment of Cu2ZnSn(S,Se)4 solar cells?

被引:129
|
作者
Crovetto, Andrea [1 ]
Hansen, Ole [1 ,2 ]
机构
[1] Tech Univ Denmark, DTU Nanoteck, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Villum Ctr Sci Sustainable Fuels & Chem, V SUSTAIN, DK-2800 Lyngby, Denmark
关键词
CZTS; Kesterite; CdS; Band alignment; XPS; Conduction band offset; BUFFER LAYERS; CDS BUFFER; THIN-FILMS; II-VI; CU2ZNSNS4; EFFICIENCY; DISCONTINUITIES; SEMICONDUCTORS; OFFSETS; IMPROVE;
D O I
10.1016/j.solmat.2017.05.008
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The band alignment at the Cu2ZnSn(S,Se)(4)/CdS solar cell heterojunction is a controversial issue, as different measurements and calculations point to substantially different conduction band offsets (CBO). As the actual value of the CBO has profound implications on solar cell performance, the aim of this work is to separate genuine process-dependent variations in the CBO from errors in its experimental determination. We argue that the two most likely mechanisms responsible for real CBO variations are Fermi level pinning (which tends to decrease the CBO) and chemical interdiffusion (which tends to increase the CBO). The experimental and computational approaches employed so far to determine the band alignment are analyzed to point out possible limitations for each approach, with an emphasis on photoemission-based approaches. The influence of Fermi level pinning on the CBO should be captured correctly by all types of measurements, except for measurements performed under flat-band conditions. This may explain some particularly large values of the CEO that have been measured under flat-band conditions. On the other hand, the influence of interdiffusion is difficult to resolve completely by most measurement approaches. Interestingly, a rough correlation can be established between the CBO measured at the Cu2ZnSnS4/CdS interface by different groups and their corresponding solar cell efficiency: lower-efficiency cells often have a large "cliff-like" offset, whereas most high-efficiency cells have a "spike-like" or nearly flat offset. Control of interdiffusion can be a powerful way to engineer the optimal band alignment in Cu2ZnSnS4/CdS solar cells, but it can be detrimental in Cu2ZnSnSe4/CdS solar cells, as it may increase the CBO above the optimal range for maximum efficiency.
引用
收藏
页码:177 / 194
页数:18
相关论文
共 50 条
  • [1] Advances in Cu2ZnSn(S,Se)4 Thin Film Solar Cells
    Zhang Xue
    Han Yang
    Chai Shuang-Zhi
    Hu Nan-Tao
    Yang Zhi
    Geng Hui-Juan
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (06) : 1330 - 1346
  • [2] Inkjet-Printed Cu2ZnSn(S, Se)4 Solar Cells
    Lin, Xianzhong
    Kavalakkatt, Jaison
    Lux-Steiner, Martha Ch.
    Ennaoui, Ahmed
    ADVANCED SCIENCE, 2015, 2 (06):
  • [3] Experimental and theoretical advances in Cu2ZnSn(S,Se)4 solar cells
    Rodriguez-Osorio, K. G.
    Andrade-Arvizu, J. A.
    de los Santos, I. Montoya
    Moran-Lazaro, J. P.
    Ojeda-Martinez, M.
    Sanchez-Rodriguez, F. J.
    Sanchez-Hernandez, L. A.
    Perez, L. M.
    Laroze, D.
    Chandrasekar, P.
    Routray, S.
    Courel, Maykel
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (13)
  • [4] Efficiency enhancement of Cu2ZnSn(S, Se)4 solar cells by addition a CuSe intermediate layer between Cu2ZnSn(S, Se)4 and Mo electrode
    Zhang, JiaYong
    Yao, Bin
    Ding, Zhanhui
    Li, Yongfeng
    Wang, Ting
    Wang, Chunkai
    Liu, Jia
    Ma, Ding
    Zhang, Dongxu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 911
  • [5] Antimony Doping in Solution-processed Cu2ZnSn(S,Se)4 Solar Cells
    Tai, Kong Fai
    Fu, Dongchuan
    Chiam, Sing Yang
    Huan, Cheng Hon Alfred
    Batabyal, Sudip Kumar
    Wong, Lydia Helena
    CHEMSUSCHEM, 2015, 8 (20) : 3504 - 3511
  • [6] Impressive self-healing phenomenon of Cu2ZnSn(S, Se)4 solar cells
    Yu, Qing
    Sh, Jiangjian
    Zhang, Pengpeng
    Guo, Linbao
    Min, Xue
    Luo, Yanhong
    Wu, Huijue
    Li, Dongmei
    Meng, Qingbo
    CHINESE PHYSICS B, 2018, 27 (06)
  • [7] Effects of selenization conditions on microstructure evolution in solution processed Cu2ZnSn(S,Se)4 solar cells
    Zhao, Yun
    Han, Xiuxun
    Chang, Le
    Dong, Chen
    Li, Junshuai
    Yan, Xingbin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 195 : 274 - 279
  • [8] Optimizing the properties of Cu2ZnSn(S,Se)4 solar cells via cationic substitution with trace Ca
    Wang, Yiming
    Yang, Yanchun
    Luan, Hongmei
    Liu, Ruijian
    Li, Shuyu
    Wang, Lei
    Zhao, Chenxi
    Siqin, Letu
    Xin, Wenjing
    Wang, Dandan
    Mai, Zhihong
    Zhu, Chengjun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 921
  • [9] Cu2ZnSn(S,Se)4 solar cells based on chemical bath deposited precursors
    Gao, Chao
    Schnabel, Thomas
    Abzieher, Tobias
    Kraemmer, Christoph
    Powalla, Michael
    Kalt, Heinz
    Hetterich, Michael
    THIN SOLID FILMS, 2014, 562 : 621 - 624
  • [10] Sodium doping of solution-processed Cu2ZnSn(S,Se)4 thin film and its effect on Cu2ZnSn(S,Se)4 based solar cells
    Jiang, Dongyue
    Sui, Yingrui
    He, Wenjie
    Wang, Zhanwu
    Wang, Fengyou
    Yao, Bin
    Yang, Lili
    VACUUM, 2021, 184