Entanglement in the Majumdar-Ghosh model

被引:38
作者
Chhajlany, Ravindra W.
Tomczak, Piotr
Wojcik, Antoni
Richer, Johannes
机构
[1] Adam Mickiewicz Univ, Dept Phys, PL-61614 Poznan, Poland
[2] Univ Magdeburg, Inst Theoret Phys, D-39016 Magdeburg, Germany
来源
PHYSICAL REVIEW A | 2007年 / 75卷 / 03期
关键词
D O I
10.1103/PhysRevA.75.032340
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an analysis of the entanglement characteristics in the Majumdar-Ghosh (MG) or J(1)-J(2) Heisenberg model. For a system consisting of up to 28 spins, there is a deviation from the scaling behavior of the entanglement entropy characterizing the unfrustrated Heisenberg chain above J(2)approximate to 0.25. This feature can be used as an indicator of the dimer phase transition occurring in this model. Additionally, we also consider entanglement at the MG point J(2)=0.5J(1).
引用
收藏
页数:6
相关论文
共 21 条
[1]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]   GEOMETRIC AND RENORMALIZED ENTROPY IN CONFORMAL FIELD-THEORY [J].
HOLZHEY, C ;
LARSEN, F ;
WILCZEK, F .
NUCLEAR PHYSICS B, 1994, 424 (03) :443-467
[3]   Boundary effects in the critical scaling of entanglement entropy in 1D systems [J].
Laflorencie, N ;
Sorensen, ES ;
Chang, MS ;
Affleck, I .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[4]   ON NEXT-NEAREST-NEIGHBOR INTERACTION IN LINEAR CHAIN .I. [J].
MAJUMDAR, CK ;
GHOSH, DK .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) :1388-+
[5]  
MAJUMDAR CK, 1969, J MATH PHYS, V10, P1399, DOI 10.1063/1.1664979
[6]  
MARSHALL W, 1955, PROC R SOC LON SER-A, V232, P48, DOI 10.1098/rspa.1955.0200
[7]  
Mikeska HJ, 2004, LECT NOTES PHYS, V645, P1
[8]  
Nielsen M.A., 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[9]   FLUID DIMER CRITICAL-POINT IN S=1/2 ANTIFERROMAGNETIC HEISENBERG CHAIN WITH NEXT NEAREST NEIGHBOR INTERACTIONS [J].
OKAMOTO, K ;
NOMURA, K .
PHYSICS LETTERS A, 1992, 169 (06) :433-437
[10]  
Osborne TJ, 2002, PHYS REV A, V66, DOI 10.1103/PhysRevA.66.032110