Novel thermoelectric properties of complex transition-metal oxides

被引:42
|
作者
Terasaki, Ichiro [1 ]
Iwakawa, Manabu [1 ]
Nakano, Tomohito [2 ]
Tsukuda, Akira [1 ]
Kobayashi, Wataru [3 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
[2] Kyushu Univ, Dept Phys, Fukuoka 8128581, Japan
[3] Waseda Univ, Waseda Inst Adv Study, Tokyo 1698050, Japan
关键词
HIGH-DIELECTRIC-CONSTANT; PHYSICAL-PROPERTIES; MAGNETIC-PROPERTIES; MISFIT COBALTITES; LARGE THERMOPOWER; PEROVSKITE; PHASES; LN; MAGNETORESISTANCE; MANGANITES;
D O I
10.1039/b914661j
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report how the thermopower of complex transition-metal oxides is susceptible to small changes in material parameters. In the A-site ordered perovskite oxide R(2/3)Cu(3)Ti(3.6)Ru(0.4)O(12), the thermopower changes from 15 to -100 mu VK(-1) at 300 K in going from R = La to Er. We associate this with the hybridization between Cu 3d and Ru 4d electrons, which depends on R. For stronger hybridization, the Cu 3d electrons become more itinerant leading to positive thermopower. In the A-site ordered perovskite cobalt oxide Sr(3)YCo(4)O(10.5), the spin state of the Co(3+) ions determines the magnitude of the thermopower, where partial isovalent substitution (Ca for Sr and Rh for Co) enhances the thermopower whilst keeping the resistivity intact. These substitutions stabilize the low spin state of the Co(3+) ions, which affects the thermopower through the entropy of the background for the carriers. We propose that the control of the magnetism plays a pivotal role in determining the thermopower in a certain class of complex oxides.
引用
收藏
页码:1005 / 1011
页数:7
相关论文
共 50 条
  • [1] Transition-Metal Oxides for Thermoelectric Generation
    J.P. Doumerc
    M. Blangero
    M. Pollet
    D. Carlier
    J. Darriet
    R. Berthelot
    C. Delmas
    R. Decourt
    Journal of Electronic Materials, 2009, 38 : 1078 - 1082
  • [2] THERMOELECTRIC INVESTIGATION OF TRANSITION-METAL OXIDES
    WU, CC
    MASON, TO
    AMERICAN CERAMIC SOCIETY BULLETIN, 1979, 58 (03): : 368 - 368
  • [3] Transition-Metal Oxides for Thermoelectric Generation
    Doumerc, J. P.
    Blangero, M.
    Pollet, M.
    Carlier, D.
    Darriet, J.
    Berthelot, R.
    Delmas, C.
    Decourt, R.
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) : 1078 - 1082
  • [4] Thermoelectric materials in layered transition-metal oxides
    Terasaki, I
    ICT: 2005 24TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2005, : 289 - 294
  • [5] Transition metal oxides - Thermoelectric properties
    Walia, Sumeet
    Balendhran, Sivacarendran
    Nili, Hussein
    Zhuiykov, Serge
    Rosengarten, Gary
    Wang, Qing Hua
    Bhaskaran, Madhu
    Sriram, Sharath
    Strano, Michael S.
    Kalantar-zadeh, Kourosh
    PROGRESS IN MATERIALS SCIENCE, 2013, 58 (08) : 1443 - 1489
  • [6] ELECTROPHYSICAL PROPERTIES OF TRANSITION-METAL OXIDES
    TKACHENKO, IG
    FEN, EK
    INORGANIC MATERIALS, 1982, 18 (06) : 822 - 825
  • [7] THERMOELECTRIC STUDIES OF POINT-DEFECTS IN TRANSITION-METAL OXIDES
    MASON, TO
    AMERICAN CERAMIC SOCIETY BULLETIN, 1982, 61 (08): : 808 - 808
  • [8] Thermoelectric performances of perovskite transition-metal oxides at high temperature
    Flahaut, Delphine
    Goupil, Christophe
    Hebert, Sylvie
    Lemonnier, Sebastien
    Noudem, Jacques
    Maignan, Antoine
    Funahashi, Ryoji
    TRANSACTIONS OF THE MATERIALS RESEARCH SOCIETY OF JAPAN, VOL 31, NO 2, 2006, 31 (02): : 371 - 374
  • [9] Electronic and Thermoelectric Properties of Transition-Metal Dichalcogenides
    Bilc, Daniel I.
    Benea, Diana
    Pop, Viorel
    Ghosez, Philippe
    Verstraete, Matthieu J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (49): : 27084 - 27097
  • [10] Stability and Thermoelectric Properties of Transition-Metal Silicides
    R. Viennois
    X. Tao
    P. Jund
    J.-C. Tedenac
    Journal of Electronic Materials, 2011, 40 : 597 - 600