Wavelet domain image denoising for non-stationary noise and signal-dependent noise

被引:27
作者
Goossens, Bart [1 ]
Pizurica, Aleksandra [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, Dept Telecommun & Informat Proc, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
来源
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS | 2006年
关键词
image restoration; Gaussian noise; non-stationary noise; signal-dependent noise;
D O I
10.1109/ICIP.2006.312694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a low-complexity overcomplete wavelet domain method for denoising digital images corrupted with non-stationary white additive Gaussian noise. The noise level for each pixel is estimated from a local window around that pixel. We use a shrinkage function that adapts itself to the noise level and to the spatially changing statistics of the image. Experiments show that this noise model has good results for different non-stationary noise sources. Finally, we extend our method for denoising images corrupted with signal-dependent noise.
引用
收藏
页码:1425 / +
页数:3
相关论文
共 8 条
[1]   Spatially adaptive wavelet thresholding with context modeling for image denoising [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1522-1531
[2]   DE-NOISING BY SOFT-THRESHOLDING [J].
DONOHO, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (03) :613-627
[3]  
Hirakawa K, 2005, INT CONF ACOUST SPEE, P29
[4]  
Jung YH, 2000, IEEE T CONSUM ELECTR, V46, P68, DOI 10.1109/30.826383
[5]   An adaptive order-statistic noise filter for gamma-corrected image sequences [J].
Kleihorst, RP ;
Lagendijk, RL ;
Biemond, J .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (10) :1442-1446
[6]  
PIZURICA A, 2005, IEEE T IMAGE P
[7]   Image denoising using scale mixtures of Gaussians in the wavelet domain [J].
Portilla, J ;
Strela, V ;
Wainwright, MJ ;
Simoncelli, EP .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (11) :1338-1351
[8]  
PORTILLA J, 2005, P SOC PHOTO-OPT INS, V5914, P468