Microarray and qPCR Analysis of Mitochondrial Metabolism Activation during Prenatal and Early Postnatal Development in Rats and Humans with Emphasis on CoQ10 Biosynthesis

被引:3
作者
Krizova, Jana [1 ]
Hulkova, Martina [1 ]
Capek, Vaclav [1 ]
Mlejnek, Petr [2 ]
Silhavy, Jan [2 ]
Tesarova, Marketa [1 ]
Zeman, Jiri [1 ]
Hansikova, Hana [1 ]
机构
[1] Charles Univ Prague, Gen Univ Hosp Prague, Dept Pediat & Inherited Metab, Fac Med 1,Lab Study Mitochondrial Disorders, Ke Karlovu 2, Prague 12808 2, Czech Republic
[2] Inst Physiol AS CR, Dept Genet Model Dis, Vvi, Videnska 1083, Prague 14220 4, Czech Republic
来源
BIOLOGY-BASEL | 2021年 / 10卷 / 05期
关键词
mitochondria; coenzyme Q; ubiquinone; microarray; prenatal; human; rat; qPCR; BETA-F1-ATPASE MESSENGER-RNA; OXIDATIVE STRESS; COENZYME-Q; GENE-EXPRESSION; LIVER; PLASMA; BIOGENESIS; UBIQUINONE; PROTEIN; BLOOD;
D O I
10.3390/biology10050418
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simple Summary We lack studies investigating mitochondrial metabolism in the prenatal and early postnatal period in humans, but parallel experiments conducted in a mammalian system are informative about the human condition. Our aim was to study the perinatal metabolic switch in rats-an extremely complex process, associated with tissue proliferation and differentiation together with a rapid oxidative stress response (using techniques including microarrays, qPCR, spectrophotometry and high-performance liquid chromatography). Out of 1546 mitochondrial genes, 1119 and 827 genes significantly changed expression in rat liver and skeletal muscle, respectively. The most remarkable expression shift occurred in the rat liver at least two days before birth. Coenzyme Q and mitochondrial metabolism-based evaluation in both the rat model and human tissues showed the same trend: the total CoQ content and mitochondrial metabolism significantly increases after birth, possibly regulated by COQ8A kinase. Our microarray data could serve as a suitable background for finding key factors regulating mitochondrial metabolism and preparation of the foetus for the transition to extra-uterine conditions, or as preliminary data for further studies of the complex mitochondrial metabolism regulation and diagnostics of mitochondrial disorders. At the end of the mammalian intra-uterine foetal development, a rapid switch from glycolytic to oxidative metabolism must proceed. Using microarray techniques, qPCR, enzyme activities and coenzyme Q content measurements, we describe perinatal mitochondrial metabolism acceleration in rat liver and skeletal muscle during the perinatal period and correlate the results with those in humans. Out of 1546 mitochondrial genes, we found significant changes in expression in 1119 and 827 genes in rat liver and skeletal muscle, respectively. The most remarkable expression shift occurred in the rat liver at least two days before birth. Coenzyme Q-based evaluation in both the rat model and human tissues showed the same trend: the total CoQ content is low prenatally, significantly increasing after birth in both the liver and skeletal muscle. We propose that an important regulator of rat coenzyme Q biosynthesis might be COQ8A, an atypical kinase involved in the biosynthesis of coenzyme Q. Our microarray data, a total of 16,557 RefSeq (Entrez) genes, have been deposited in NCBI's Gene Expression Omnibus and are freely available to the broad scientific community. Our microarray data could serve as a suitable background for finding key factors regulating mitochondrial metabolism and the preparation of the foetus for the transition to extra-uterine conditions.
引用
收藏
页数:23
相关论文
共 73 条
  • [1] Clinical syndromes associated with Coenzyme Q10 deficiency
    Alcazar-Fabra, Maria
    Trevisson, Eva
    Brea-Calvo, Gloria
    [J]. MITOCHONDRIAL DISEASES, 2018, 62 (03): : 377 - 398
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] Physiological diversity of mitochondrial oxidative phosphorylation
    Benard, G.
    Faustin, B.
    Passerieux, E.
    Galinier, A.
    Rocher, C.
    Bellance, N.
    Delage, J. -P.
    Casteilla, L.
    Letellier, T.
    Rossignol, R.
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2006, 291 (06): : C1172 - C1182
  • [4] The antioxidant role of coenzyme Q
    Bentinger, Magnus
    Brismar, Kerstin
    Dallner, Gustav
    [J]. MITOCHONDRION, 2007, 7 : S41 - S50
  • [5] Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats
    Bravo, Elena
    Palleschi, Simonetta
    Rossi, Barbara
    Napolitano, Mariarosaria
    Tiano, Luca
    D'Amore, Emanuela
    Botham, Kathleen M.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2012, 13 (02) : 1644 - 1657
  • [6] BURCH HB, 1963, J BIOL CHEM, V238, P2267
  • [7] Expansion of the Gene Ontology knowledgebase and resources
    Carbon, S.
    Dietze, H.
    Lewis, S. E.
    Mungall, C. J.
    Munoz-Torres, M. C.
    Basu, S.
    Chisholm, R. L.
    Dodson, R. J.
    Fey, P.
    Thomas, P. D.
    Mi, H.
    Muruganujan, A.
    Huang, X.
    Poudel, S.
    Hu, J. C.
    Aleksander, S. A.
    McIntosh, B. K.
    Renfro, D. P.
    Siegele, D. A.
    Antonazzo, G.
    Attrill, H.
    Brown, N. H.
    Marygold, S. J.
    McQuilton, P.
    Ponting, L.
    Millburn, G. H.
    Rey, A. J.
    Stefancsik, R.
    Tweedie, S.
    Falls, K.
    Schroeder, A. J.
    Courtot, M.
    Osumi-Sutherland, D.
    Parkinson, H.
    Roncaglia, P.
    Lovering, R. C.
    Foulger, R. E.
    Huntley, R. P.
    Denny, P.
    Campbell, N. H.
    Kramarz, B.
    Patel, S.
    Buxton, J. L.
    Umrao, Z.
    Deng, A. T.
    Alrohaif, H.
    Mitchell, K.
    Ratnaraj, F.
    Omer, W.
    Rodriguez-Lopez, M.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D331 - D338
  • [8] Gene expression across mammalian organ development
    Cardoso-Moreira, Margarida
    Halbert, Jean
    Valloton, Delphine
    Velten, Britta
    Chen, Chunyan
    Shao, Yi
    Liechti, Angelica
    Ascencao, Kelly
    Rummel, Coralie
    Ovchinnikova, Svetlana
    Mazin, Pavel V.
    Xenarios, Ioannis
    Harshman, Keith
    Mort, Matthew
    Cooper, David N.
    Sandi, Carmen
    Soares, Michael J.
    Ferreira, Paula G.
    Afonso, Sandra
    Carneiro, Miguel
    Turner, James M. A.
    VandeBerg, John L.
    Fallahshahroudi, Amir
    Jensen, Per
    Behr, Ruediger
    Lisgo, Steven
    Lindsay, Susan
    Khaitovich, Philipp
    Huber, Wolfgang
    Baker, Julie
    Anders, Simon
    Zhang, Yong E.
    Kaessmann, Henrik
    [J]. NATURE, 2019, 571 (7766) : 505 - +
  • [9] Characterization of the rat developmental liver transcriptome
    Chapple, Richard H.
    Tizioto, Polyana C.
    Wells, Kevin D.
    Givan, Scott A.
    Kim, Jae Woo
    McKay, Stephanie D.
    Schnabel, Robert D.
    Taylor, Jeremy F.
    [J]. PHYSIOLOGICAL GENOMICS, 2013, 45 (08) : 301 - 311
  • [10] Mitochondrial biogenesis in the liver during development and oncogenesis
    Cuezva, JM
    Ostronoff, LK
    Ricart, J
    deHeredia, ML
    DiLiegro, CM
    Izquierdo, JM
    [J]. JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1997, 29 (04) : 365 - 377