Existence of solutions for fourth-order nonlinear boundary value problems

被引:0
作者
Huang, Mingzhu [1 ]
机构
[1] Hunan Univ Sci & Technol, Dept Math, Xiangtan 411701, Hunan, Peoples R China
关键词
Boundary value problem; Quasilinearization method; Upper solution and lower solution; Extreme solution;
D O I
10.1186/s13662-021-03354-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the existence and approximation of solutions for a fourth- order nonlinear boundary value problem by using a quasilinearization technique. In the presence of a lower solution a and an upper solution beta in the reverse order alpha >= beta, we show the existence of (extreme) solution.
引用
收藏
页数:10
相关论文
共 14 条
[1]  
Ahmad B., 2003, Journal of Applied Mathematics and Stochastic Analysis, V16, P33, DOI DOI 10.1155/S1048953303000030
[2]  
Ahmad B, 2002, ELECTRON J DIFFER EQ
[3]   A quasilinearization method for a class of second order singular nonlinear differential equations with nonlinear boundary conditions [J].
El-Gebeily, Mohamed ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) :174-186
[4]  
Khan RA, 2005, ELECTRON J DIFFER EQ
[5]  
Korman P., 1989, APPL ANAL, V33, P267, DOI 10.1080/00036818908839878
[6]  
Lakshmikantham V., 1998, GEN QUASILINEARIZATI, DOI [10.1007/978-1-4757-2874-3, DOI 10.1007/978-1-4757-2874-3]
[7]   Monotone iterative method for the second-order three-point boundary value problem with upper and lower solutions in the reversed order [J].
Li, Fangfei ;
Sun, Jitao ;
Jia, Mei .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) :4840-4847
[8]  
[李永祥 Li Yongxiang], 2003, [数学物理学报. A辑, Acta Mathematica Scientia], V23, P245
[9]  
Ma RY, 1997, J MATH ANAL APPL, V215, P415