Stability of fractional order of time nonlinear fractional diffusion equation with Riemann-Liouville derivative

被引:8
作者
Le Dinh Long [1 ,2 ]
Ho Duy Binh [3 ,4 ,5 ]
Kumar, Devendra [6 ]
Nguyen Hoang Luc [7 ]
Nguyen Huu Can [8 ]
机构
[1] Van Lang Univ, Sci & Technol Adv Inst, Div Appl Math, Ho Chi Minh City, Vietnam
[2] Van Lang Univ, Fac Technol, Ho Chi Minh City, Vietnam
[3] HCMC Univ Technol, Fac Appl Sci, Dept Appl Math, Ho Chi Minh City, Vietnam
[4] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[5] Nguyen Hue Univ, Fac Fundamental Sci, Bien Hoa City, Vietnam
[6] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India
[7] Banking Univ Ho Chi Minh City, Dept Math Econ, Ho Chi Minh City, Vietnam
[8] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
continuity estimates; Dirichlet boundary value problem; fractional diffusion equation; Riemann-Liouville derivative; DIFFERENTIAL-EQUATIONS; CONTINUITY;
D O I
10.1002/mma.8166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate an equation of nonlinear fractional diffusion with the derivative of Riemann-Liouville. Firstly, we determine the global existence and uniqueness of the mild solution. Next, under some assumptions on the input data, we discuss continuity with regard to the fractional derivative order for the time. Our key idea is to combine the theories Mittag-Leffler functions and Banach fixed-point theorem. Finally, we present some examples to test the proposed theory.
引用
收藏
页码:6194 / 6216
页数:23
相关论文
共 22 条
[1]   A double-logarithmically improved regularity criterion of weak solutions for the 3D MHD equations [J].
Ben Omrane, Ines ;
Gala, Sadek ;
Ragusa, Maria Alessandra .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03)
[2]   Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative [J].
Benchohra, Mouffak ;
Bouriah, Soufyane ;
Nieto, Juan J. .
DEMONSTRATIO MATHEMATICA, 2019, 52 (01) :467-474
[3]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[4]   Continuity of Solutions of a Class of Fractional Equations [J].
Due Trong Dang ;
Nane, Erkan ;
Dang Minh Nguyen ;
Nguyen Huy Tuan .
POTENTIAL ANALYSIS, 2018, 49 (03) :423-478
[5]  
Gal CG., FRACTIONAL TIME SEMI
[6]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143
[7]  
KATO T., 1995, Classics Math., DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9]
[8]   Fundamental results to the weighted Caputo-type differential operator [J].
Liu, Jian-Gen ;
Yang, Xiao-Jun ;
Feng, Yi-Ying ;
Geng, Lu-Lu .
APPLIED MATHEMATICS LETTERS, 2021, 121
[9]   Group analysis to the time fractional nonlinear wave equation [J].
Liu, Jian-Gen ;
Yang, Xiao-Jun ;
Feng, Yi-Ying ;
Iqbal, Muhammad .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (04)
[10]   On the generalized time fractional diffusion equation: Symmetry analysis, conservation laws, optimal system and exact solutions [J].
Liu, Jian-Gen ;
Yang, Xiao-Jun ;
Feng, Yi-Ying ;
Zhang, Hong-Yi .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (01)