Submodular Hypergraphs: p-Laplacians, Cheeger Inequalities and Spectral Clustering

被引:0
作者
Li, Pan [1 ]
Milenkovic, Olgica [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80 | 2018年 / 80卷
基金
美国国家科学基金会;
关键词
1-LAPLACIAN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce submodular hypergraphs, a family of hypergraphs that have different submodular weights associated with different cuts of hyper-edges. Submodular hypergraphs arise in clustering applications in which higher-order structures carry relevant information. For such hypergraphs, we define the notion of p-Laplacians and derive corresponding nodal domain theorems and k-way Cheeger inequalities. We conclude with the description of algorithms for computing the spectra of 1- and 2-Laplacians that constitute the basis of new spectral hypergraph clustering methods.
引用
收藏
页数:10
相关论文
共 34 条
[1]  
Amghibech S, 2003, ARS COMBINATORIA, V67, P283
[2]  
[Anonymous], 1983, Mathematical programming the state of the art
[3]  
[Anonymous], 2007, ADV NEURAL INFORM PR
[4]  
[Anonymous], 2010, Adv. Neural Inf. Process.
[5]  
Arora C, 2012, LECT NOTES COMPUT SC, V7576, P17, DOI 10.1007/978-3-642-33715-4_2
[6]  
Asuncion A., 2007, UCI MACHINE LEARNING
[7]   Learning with Submodular Functions: A Convex Optimization Perspective [J].
Bach, Francis .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2013, 6 (2-3) :145-373
[8]   Higher-order organization of complex networks [J].
Benson, Austin R. ;
Gleich, David F. ;
Leskovec, Jure .
SCIENCE, 2016, 353 (6295) :163-166
[9]  
Biyikoglu T, 2007, LECT NOTES MATH, V1915
[10]  
Buhler T., 2009, P 26 ANN INT C MACHI, P81