Concentration-Gradient Prussian Blue Cathodes for Na-Ion Batteries

被引:114
作者
Hu, Pu [1 ]
Peng, Wenbo [1 ]
Wang, Bo [1 ]
Xiao, Dongdong [2 ]
Ahuja, Utkarsh [1 ]
Rethore, Julien [3 ]
Aifantis, Katerina E. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32603 USA
[2] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Nantes, Ecole Cent Nantes, Res Inst Civil & Mech Engn Gem, CNRS,UMR 6183, F-44321 Nantes, France
基金
美国国家科学基金会;
关键词
MECHANICAL DEGRADATION; SUPERIOR CATHODE; CAPACITY FADE; THIN-FILMS; FRACTURE; ELECTRODE; ANODES; PERFORMANCE; EVOLUTION; CRACKING;
D O I
10.1021/acsenergylett.9b02410
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A concentration-gradient composition is proposed as an effective approach to solve the mechanical degradation and improve the electrochemical cyclability for cathodes of sodium-ion batteries. Concentration-gradient NaxNiyMn1-yFe(CN)(6)center dot nH(2)O particles, in which the Ni content gradually increased from the interior to the particle surface, were synthesized by a facile co-precipitation process. Using these particles as the active material in cathodes resulted in an improved electrochemical performance compared to homogeneous NaxMnFe(CN)(6)center dot nH(2)O, delivering a high reversible specific capacity of 110 mAh at 0.2 C and outstanding cycling stability (93% retention after 1000 cycles at 5 C). Electron microscopy illustrated that the promising electrochemical properties obtained for the gradient composition can be attributed to its robust microstructure, which alleviated the electrochemically induced stresses and accumulated damage during sodiation/desodiation, preventing hence the fracture which was observed in the homogeneous samples.. These findings render a prospective strategy to develop high-performance electrode materials for sodium-ion batteries.
引用
收藏
页码:100 / 108
页数:17
相关论文
共 40 条
[1]   Mechanical stability for nanostructured Sn- and Si-based anodes [J].
Aifantis, K. E. ;
Hackney, S. A. .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2122-2127
[2]   Fracture of nanostructured Sn/C anodes during Li-insertion [J].
Aifantis, Katerina E. ;
Haycock, Meghan ;
Sanders, Paul ;
Hackney, Stephen A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 :55-61
[3]   Capacity fade in Sn-C nanopowder anodes due to fracture [J].
Aifantis, Katerina E. ;
Huang, Tao ;
Hackney, Stephen A. ;
Sarakonsri, Thapanee ;
Yu, Aishui .
JOURNAL OF POWER SOURCES, 2012, 197 :246-252
[4]   Stable crack growth in nanostructured Li-batteries [J].
Aifantis, KE ;
Dempsey, JP .
JOURNAL OF POWER SOURCES, 2005, 143 (1-2) :203-211
[5]   Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries [J].
Ebner, Martin ;
Marone, Federica ;
Stampanoni, Marco ;
Wood, Vanessa .
SCIENCE, 2013, 342 (6159) :716-720
[6]   Stabilizing a High-Energy-Density Rechargeable Sodium Battery with a Solid Electrolyte [J].
Gao, Hongcai ;
Xin, Sen ;
Xue, Leigang ;
Goodenough, John B. .
CHEM, 2018, 4 (04) :833-844
[7]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[8]   Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries [J].
Gu, Meng ;
Kushima, Akihiro ;
Shao, Yuyan ;
Zhang, Ji-Guang ;
Liu, Jun ;
Browning, Nigel D. ;
Li, Ju ;
Wang, Chongmin .
NANO LETTERS, 2013, 13 (11) :5203-5211
[9]   Oxygen Vacancies Lead to Loss of Domain Order, Particle Fracture, and Rapid Capacity Fade in Lithium Manganospinel (LiMn2O4) Batteries [J].
Hao, Xiaoguang ;
Lin, Xianke ;
Lu, Wei ;
Bartlett, Bart M. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :10849-10857
[10]   Capturing the differences between lithiation and sodiation of nanostructured TiS2 electrodes [J].
Hu, Pu ;
Wang, Bo ;
Xiao, Dongdong ;
Aifantis, Katerina .
NANO ENERGY, 2019, 63