Regularity and decay of solutions to the stark evolution equation

被引:9
作者
Ben-Artzi, M [1 ]
Devinatz, A
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Stark Hamiltonian; global regularity; long-time decay;
D O I
10.1006/jfan.1997.3211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Long-time behavior and regularity are studied for solutions of the Stark equation u(1) = i(- Delta - x(1) + V(x)) u, u(O, x) is an element of L-2(R-n). It is shown that for a class of short-range potentials V(x) the gain of local smoothness and the decay as \t\ --> infinity are close to those of the corresponding Schrodinger equation u(1) = i(- Delta + V(x))u. (C) 1998 Academic Press.
引用
收藏
页码:501 / 512
页数:12
相关论文
共 19 条
[1]   SPECTRAL AND SCATTERING THEORY OF SCHRODINGER OPERATORS RELATED TO STARK EFFECT [J].
AVRON, JE ;
HERBST, IW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (03) :239-254
[2]   UNITARY EQUIVALENCE AND SCATTERING-THEORY FOR STARK-LIKE HAMILTONIANS [J].
BENARTZI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (04) :951-964
[3]   GLOBAL ESTIMATES FOR THE SCHRODINGER-EQUATION [J].
BENARTZI, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 107 (02) :362-368
[4]   DECAY AND REGULARITY FOR THE SCHRODINGER-EQUATION [J].
BENARTZI, M ;
KLAINERMAN, S .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :25-37
[5]  
BenArtzi M, 1997, ANN I H POINCARE-PHY, V67, P29
[6]   LOCAL SMOOTHING AND CONVERGENCE PROPERTIES OF SCHRODINGER TYPE EQUATIONS [J].
BENARTZI, M ;
DEVINATZ, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) :231-254
[7]  
BENARTZI M, 1984, J ANAL MATH, V43, P215
[8]  
BENARTZI M, 1987, MEMOIRS AM MATH SOC, V364
[9]   LOCAL SMOOTHING PROPERTIES OF SCHRODINGER-EQUATIONS [J].
CONSTANTIN, P ;
SAUT, JC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :791-810
[10]  
Constantin P., 1988, J AM MATH SOC, V1, P413