Optimal Young's inequality and its converse: A simple proof

被引:66
作者
Barthe, F [1 ]
机构
[1] Univ Marne la Vallee, Equipe Anal & Math Appl, F-77454 Marne La Vallee 2, France
关键词
Simple Proof; Reverse Inequality; Sharp Form;
D O I
10.1007/s000390050054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the sharp form of Young's inequality for convolutions, first proved by Beckner [Be] and Brascamp-Lieb [BrLi]. The latter also proved a sharp reverse inequality in the case of exponents less than 1. Our proof is simpler and gives Young's inequality and its converse altogether.
引用
收藏
页码:234 / 242
页数:9
相关论文
共 10 条
[1]  
BALL K, 1991, J LOND MATH SOC, V44, P351
[2]   Brascamp-Lieb inequalities and convexity [J].
Barthe, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :885-888
[3]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[4]   BEST CONSTANTS IN YOUNGS INEQUALITY, ITS CONVERSE, AND ITS GENERALIZATION TO MORE THAN 3 FUNCTIONS [J].
BRASCAMP, HJ ;
LIEB, EH .
ADVANCES IN MATHEMATICS, 1976, 20 (02) :151-173
[5]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[6]  
Henstock R., 1953, Proc. Lond. Math. Soc. (3), V3, P182, DOI [10.1112/plms/s3-3.1.182, DOI 10.1112/PLMS/S3-3.1.182]
[7]  
KNOTHE H., 1957, Michigan Math. J., V4, P39
[8]  
LEINDLER L, 1972, ACTA SCI MATH, V33, P217
[9]   GAUSSIAN KERNELS HAVE ONLY GAUSSIAN MAXIMIZERS [J].
LIEB, EH .
INVENTIONES MATHEMATICAE, 1990, 102 (01) :179-208
[10]  
Prekopa A., 1973, ACTA SCI MATH, V34, P335