Microstructure and creep of Mo-ZrC in-situ composite

被引:16
|
作者
Suzuki, T [1 ]
Nomura, N [1 ]
Yoshimi, K [1 ]
Hanada, S [1 ]
机构
[1] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
来源
MATERIALS TRANSACTIONS JIM | 2000年 / 41卷 / 09期
关键词
molybdenum; zirconium carbide; in-situ composite; hyper-eutectic structure; creep;
D O I
10.2320/matertrans1989.41.1164
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Microstructure and creep of are-melted and annealed Mo-40 mol%ZrC in-situ composite were investigated in this study. Microstructure after annealing is found to consist of primary ZrC particles and fine Mo/ZrC eutectic structure, i.e. hyper-eutectic structure. Compressive creep tests in the temperature range from 1673 to 1873 K indicate that the stress exponent, n: is approximately 5 in the stress range from 100 to 500 MPa, and the apparent activation energy for the creep deformation is estimated to be about 500 kJ/mol at 200 MPa and 300 MPa. TEM observation for crept specimens shows that the creep deformation is accompanied with sub-boundary formation in Mo solid solution phase. It is suggested that the creep deformation of the composite in the temperature range examined is interpreted in terms of the dislocation creep of Mo solid solution phase controlled by the lattice diffusion of either Mo or Zr.
引用
收藏
页码:1164 / 1167
页数:4
相关论文
共 50 条
  • [41] Tensile properties and microstructure of in situ NiAl-Cr (Zr) eutectic composite
    Guo, JT
    Qi, YH
    Li, GS
    Wu, WT
    COMPOSITE STRUCTURES, 2003, 62 (3-4) : 323 - 327
  • [42] Effect of Isothermal Reheating at Different Holding Times on The Microstructure of Al-Mg2Si In-situ Cast Composite
    Malekan, A.
    Emamy, M.
    Ghiasinejad, J.
    Ghorbani, M. R.
    NUMIFORM 2010, VOLS 1 AND 2: DEDICATED TO PROFESSOR O. C. ZIENKIEWICZ (1921-2009), 2010, 1252 : 669 - 672
  • [43] Microstructure and Strengthening Model of Cu-Fe In-Situ Composites
    Liu, Keming
    Sheng, Xiaochun
    Li, Qingpeng
    Zhang, Mengcheng
    Han, Ningle
    He, Guangyu
    Zou, Jin
    Chen, Wei
    Atrens, Andrej
    MATERIALS, 2020, 13 (16)
  • [44] Microstructure and Properties of Cu-Cr-Ag in-situ Composites
    Liu Keming
    Lu Deping
    Zhou Haitao
    Atrens, A.
    Zou Jin
    Yang Yanling
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 (11) : 1931 - 1935
  • [45] Microstructure and strength of NbCr2/Cr in-situ composites
    Aoyama, N
    Hanada, S
    MATERIALS TRANSACTIONS JIM, 1997, 38 (02): : 155 - 162
  • [46] Synthesis, Characterization, and Microstructure of ZrC/SiC Composite Ceramics via Liquid Precursor Conversion Method
    Liu, Dan
    Qiu, Wen-Feng
    Cai, Tao
    Sun, Ya-nan
    Zhao, Ai-Jun
    Zhao, Tong
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (04) : 1242 - 1247
  • [47] High temperature creep performance of aluminum-matrix composite reinforced with in-situ TiB2 sub-micrion particulate
    Huang, MH
    Wang, HW
    Li, XF
    Yi, HZ
    RARE METAL MATERIALS AND ENGINEERING, 2005, 34 (09) : 1394 - 1398
  • [48] Microstructure and creep behavior of BN/AI (-Mg) metal matrix composite
    Lee, DB
    Woo, SW
    Bae, SY
    Lim, BS
    ADVANCES IN FRACTURE AND STRENGTH, PTS 1- 4, 2005, 297-300 : 1102 - 1107
  • [49] Microstructure and mechanical properties of Mo-ZrC-Cu composites synthesized by reactive melt infiltration of Zr-Cu melt into porous Mo2C preforms at 1300 °C
    Wang, Dong
    Wang, Yujin
    Deng, Weizhi
    Song, Guiming
    Zhou, Yu
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 212 : 51 - 59
  • [50] Microstructure and wear properties of laser melted γ-Ni/Mo2Ni3Si metal silicide "in situ" composite
    Xu, Y. W.
    Wang, H. M.
    MATERIALS LETTERS, 2007, 61 (02) : 412 - 416