von!Neumann quantization of Aharonov-Bohm operator with δ interaction:: Scattering theory, spectral and resonance properties

被引:0
作者
Honnouvo, G
Hounkonnou, MN
Avossevou, GYH
机构
[1] ICMPA, Cotonou, Benin
[2] IMSP, URPI, Porto Novo, Benin
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the theory of self-adjoint extensions, we study the interaction model formally given by the Hamiltonian H-alpha + V(r), where H-alpha is the Aharonov-Bohm Hamiltonian and V(r) is the delta-type interaction potential on the cylinder of radius R. We give the mathematical definition of the model, the self-adjointness of the Hamiltonian and provide relevant spectral properties, results for resonance effects and stationary scattering characteristics.
引用
收藏
页码:66 / 71
页数:6
相关论文
共 37 条
  • [31] Spectral Theory of a Neumann–Poincaré-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance
    Habib Ammari
    Giulio Ciraolo
    Hyeonbae Kang
    Hyundae Lee
    Graeme W. Milton
    Archive for Rational Mechanics and Analysis, 2013, 208 : 667 - 692
  • [32] Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincare operator
    Ando, Kazunori
    Kang, Hyeonbae
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 162 - 178
  • [33] Spectral Theory of a Neumann-Poincar,-Type Operator and Analysis of Cloaking Due to Anomalous Localized Resonance
    Ammari, Habib
    Ciraolo, Giulio
    Kang, Hyeonbae
    Lee, Hyundae
    Milton, Graeme W.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (02) : 667 - 692
  • [34] Investigating the magneto-transport and thermal properties of 2D electron systems under the influence of the Aharonov-Bohm field and Eckart potential interaction
    Edet, C. O.
    Lakaal, K.
    El Hamdaoui, J.
    Feddi, K.
    Perez, L. M.
    Feddi, E.
    Ikot, A. N.
    Ali, N.
    Rais, Shamsul Amir Abdul
    Asjad, M.
    PHYSICA B-CONDENSED MATTER, 2024, 673
  • [35] Spectral properties of the Neumann-Poincare operator and cloaking by anomalous localized resonance for the elasto-static system
    Ando, Kazunori
    Ji, Yong-Gwan
    Kang, Hyeonbae
    Kim, Kyoungsun
    Yu, Sanghyeon
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (02) : 189 - 225
  • [36] Spectral Properties of Neumann-Poincare Operator and Anomalous Localized Resonance in Elasticity Beyond Quasi-Static Limit
    Deng, Youjun
    Li, Hongjie
    Liu, Hongyu
    JOURNAL OF ELASTICITY, 2020, 140 (02) : 213 - 242
  • [37] Spectral Properties of Neumann-Poincaré Operator and Anomalous Localized Resonance in Elasticity Beyond Quasi-Static Limit
    Youjun Deng
    Hongjie Li
    Hongyu Liu
    Journal of Elasticity, 2020, 140 : 213 - 242