Terminal Alkenes from Acrylic Acid Derivatives via Non-Oxidative Enzymatic Decarboxylation by Ferulic Acid Decarboxylases

被引:29
作者
Aleku, Godwin A. [1 ]
Prause, Christoph [3 ]
Bradshaw-Allen, Ruth T. [1 ]
Plasch, Katharina [3 ]
Glueck, Silvia M. [2 ,3 ]
Bailey, Samuel S. [1 ]
Payne, Karl A. P. [1 ]
Parker, David A. [4 ]
Faber, Kurt [3 ]
Leys, David [1 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, Sch Chem, 131 Princess St, Manchester M1 7DN, Lancs, England
[2] ACIB, A-8010 Graz, Austria
[3] Karl Franzens Univ Graz, Dept Chem, Heinrichstr 28, A-8010 Graz, Austria
[4] Shell Int Explorat & Prod Inc, Westhollow Technol Ctr, Innovat Biodomain, Houston, TX USA
基金
英国生物技术与生命科学研究理事会; 欧洲研究理事会; 奥地利科学基金会;
关键词
Biocatalysis; Ferulic acid decarboxylase; Prenylated flavin; Decarboxylation; Terminal alkenes; REVERSIBLE PYRROLE-2-CARBOXYLATE DECARBOXYLASE; 1,3-DIPOLAR CYCLOADDITION REACTIONS; BACTERIAL UBIQUINONE BIOSYNTHESIS; EXPRESSING STREPTOMYCES-LIVIDANS; CARBON-DIOXIDE FIXATION; HYDROXYSTYRENE DERIVATIVES; STRUCTURAL-CHARACTERIZATION; STYRENE PRODUCTION; REDUCTIVE AMINASE; ESCHERICHIA-COLI;
D O I
10.1002/cctc.201800643
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fungal ferulic acid decarboxylases (FDCs) belong to the UbiD-family of enzymes and catalyse the reversible (de)carboxylation of cinnamic acid derivatives through the use of a prenylated flavin cofactor. The latter is synthesised by the flavin prenyltransferase UbiX. Herein, we demonstrate the applicability of FDC/UbiX expressing cells for both isolated enzyme and whole-cell biocatalysis. FDCs exhibit high activity with total turnover numbers (TTN) of up to 55000 and turnover frequency (TOF) of up to 370min(-1). Co-solvent compatibility studies revealed FDC's tolerance to some organic solvents up 20% v/v. Using the in-vitro (de)carboxylase activity of holo-FDC as well as whole-cell biocatalysts, we performed a substrate profiling study of three FDCs, providing insights into structural determinants of activity. FDCs display broad substrate tolerance towards a wide range of acrylic acid derivatives bearing (hetero)cyclic or olefinic substituents at C3 affording conversions of up to >99%. The synthetic utility of FDCs was demonstrated by a preparative-scale decarboxylation.
引用
收藏
页码:3736 / 3745
页数:10
相关论文
共 73 条
  • [21] Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants
    Fujiwara, Ryosuke
    Noda, Shuhei
    Tanaka, Tsutomu
    Kondo, Akihiko
    [J]. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2016, 122 (06) : 730 - 735
  • [22] Biocatalytic carboxylation
    Glueck, Silvia M.
    Guemues, Selcuc
    Fabian, Walter M. F.
    Faber, Kurt
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 313 - 328
  • [23] Decarboxylation of Fatty Acids to Terminal Alkenes by Cytochrome P450 Compound I
    Grant, Job L.
    Hsieh, Chun H.
    Makris, Thomas M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (15) : 4940 - 4943
  • [24] Enzymes for fatty acid-based hydrocarbon biosynthesis
    Herman, Nicolaus A.
    Zhang, Wenjun
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2016, 35 : 22 - 28
  • [25] FRONTIER MOLECULAR-ORBITAL THEORY OF CYCLOADDITION REACTIONS
    HOUK, KN
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 1975, 8 (11) : 361 - 369
  • [26] HUISGEN R, 1961, P CHEM SOC LONDON, P357
  • [27] Reversible and nonoxidative γ-resorcylic acid decarboxylase:: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter
    Ishii, Y
    Narimatsu, Y
    Iwasaki, Y
    Arai, N
    Kino, K
    Kirimura, K
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 324 (02) : 611 - 620
  • [28] Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system
    Jung, Da-Hye
    Choi, Wonji
    Choi, Kwon-Young
    Jung, Eunok
    Yun, Hyungdon
    Kazlauskas, Romas J.
    Kim, Byung-Gee
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (04) : 1501 - 1511
  • [29] Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis
    Kohls, Hannes
    Steffen-Munsberg, Fabian
    Hoehne, Matthias
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 19 : 180 - 192
  • [30] Kolb H.C., 2001, ANGEW CHEM, V113, P2056, DOI 10.1002/1521-3757(20010601)113:11