Mean-reversion properties of implied volatilities

被引:2
作者
Ielpo, Florian [1 ,2 ]
Simon, Guillaume [3 ,4 ]
机构
[1] Pictet Asset Management, CH-1211 Geneva 73, Switzerland
[2] Ctr Econ Sorbonne, F-75013 Paris, France
[3] SGAM AI, F-92043 Paris, France
[4] Univ Toulouse, Toulouse, France
关键词
implied volatility; stylized fact; stocahstic volatility models; volatility surface dynamics; autoregressive models; STOCHASTIC VOLATILITY; CONDITIONAL HETEROSKEDASTICITY; TERM STRUCTURE; RETURNS; OPTIONS; VARIANCE; MODELS; JUMPS;
D O I
10.1080/1351847X.2010.481463
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we present a new stylized fact for options whose underlying asset is a stock index. Extracting implied volatility time series from call and put options on the Deutscher Aktien index (DAX) and financial times stock exchange index (FTSE), we show that the persistence of these volatilities depends on the moneyness of the options used for its computation. Using a functional autoregressive model, we show that this effect is statistically significant. Surprisingly, we show that the diffusion-based stochastic volatility models are not consistent with this stylized fact. Finally, we argue that adding jumps to a diffusion-based volatility model help recovering this volatility pattern. This suggests that the persistence of implied volatilities can be related to the tails of the underlying volatility process: this corroborates the intuition that the liquidity of the options across moneynesses introduces an additional risk factor to the one usually considered.
引用
收藏
页码:587 / 610
页数:24
相关论文
共 37 条
[11]   FUNCTIONAL-COEFFICIENT AUTOREGRESSIVE MODELS [J].
CHEN, R ;
TSAY, RS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :298-308
[12]  
CHRISTOFFERSEN PF, 2008, SHAPE TERM STRUCTURE
[13]  
Cont R., 2002, Quantitative Finance, V2, P45, DOI 10.1088/1469-7688/2/1/304
[14]  
Cont R., 2009, CONSISTENT PRICING M
[15]   A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :385-407
[16]  
DERMAN E, 1999, G SACHS QUANTITATIVE
[17]   Modeling volatility persistence of speculative returns: A new approach [J].
Ding, ZX ;
Granger, CWJ .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :185-215
[18]  
Duffie D., 1996, MATH FINANCE, V6, P379
[19]   Implied volatility functions: Empirical tests [J].
Dumas, B ;
Fleming, J ;
Whaley, RE .
JOURNAL OF FINANCE, 1998, 53 (06) :2059-2106
[20]   AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION [J].
ENGLE, RF .
ECONOMETRICA, 1982, 50 (04) :987-1007