Phase-change heterostructure enables ultralow noise and drift for memory operation

被引:321
|
作者
Ding, Keyuan [1 ,2 ]
Wang, Jiangjing [3 ,4 ]
Zhou, Yuxing [3 ]
Tian, He [5 ]
Lu, Lu [6 ]
Mazzarello, Riccardo [7 ,8 ]
Jia, Chunlin [6 ,9 ]
Zhang, Wei [3 ]
Rao, Feng [1 ,10 ]
Ma, Evan [11 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[3] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[4] Yulin Univ, Sch Chem & Chem Engn, Yulin 719000, Peoples R China
[5] Zhejiang Univ, Ctr Electron Microscopy, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[6] Xian Jiaetong Univ, Sch Microelect, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[7] Rhein Westfal TH Aachen, JARA FIT, Inst Theoret Solid State Phys, D-52074 Aachen, Germany
[8] Rhein Westfal TH Aachen, JARA HPC, D-52074 Aachen, Germany
[9] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[10] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[11] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
中国国家自然科学基金;
关键词
PLANE-WAVE; CRYSTALLIZATION; NETWORK; COHP;
D O I
10.1126/science.aay0291
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial intelligence and other data-intensive applications have escalated the demand for data storage and processing. New computing devices, such as phase-change random access memory (PCRAM)-based neuro-inspired devices, are promising options for breaking the von Neumann barrier by unifying storage with computing in memory cells. However, current PCRAM devices have considerable noise and drift in electrical resistance that erodes the precision and consistency of these devices. We designed a phase-change heterostructure (PCH) that consists of alternately stacked phase-change and confinement nanolayers to suppress the noise and drift, allowing reliable iterative RESET and cumulative SET operations for high-performance neuro-inspired computing. Our PCH architecture is amenable to industrial production as an intrinsic materials solution, without complex manufacturing procedure or much increased fabrication cost.
引用
收藏
页码:210 / +
页数:25
相关论文
共 50 条
  • [31] Temperature dependence of SET switching characteristics in phase-change memory cells
    He, Qiang
    Li, Zhen
    Liu, Chang
    Meng, Xiang-ru
    Peng, Ju-hong
    Lai, Zhi-bo
    Miao, Xiang-shui
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (38)
  • [32] Unified mechanisms for structural relaxation and crystallization in phase-change memory devices
    Ielmini, D.
    Boniardi, M.
    Lacaita, A. L.
    Redaelli, A.
    Pirovano, A.
    MICROELECTRONIC ENGINEERING, 2009, 86 (7-9) : 1942 - 1945
  • [33] Emerging horizons in phase-change materials for non-volatile memory
    Chen, Yan
    Le, Yuqiao
    Chen, Lei
    Liu, Haisong
    Sun, Tangyou
    Liu, Xingpeng
    Zhang, Fabi
    Li, Haiou
    Hu, Xinxin
    Peng, Ying
    Liu, Chengyan
    Hong, Min
    MATERIALS TODAY ADVANCES, 2025, 25
  • [34] Photo-induced optical activity in phase-change memory materials
    Borisenko, Konstantin B.
    Shanmugam, Janaki
    Williams, Benjamin A. O.
    Ewart, Paul
    Gholipour, Behrad
    Hewak, Daniel W.
    Hussain, Rohanah
    Javorfi, Tamas
    Siligardi, Giuliano
    Kirkland, Angus I.
    SCIENTIFIC REPORTS, 2015, 5
  • [35] Model of OFF-ON transition and SET process in phase-change memory
    Savransky, SD
    2005 Non-Volatile Memory Technology Symposium, Proceedings, 2005, : 105 - 109
  • [36] Ultrahigh overall-performance phase-change memory by yttrium dragging
    Liu, Bin
    Li, Kaiqi
    Zhou, Jian
    Wu, Liangcai
    Song, Zhitang
    Zhao, Weisheng
    Elliott, Stephen R.
    Sun, Zhimei
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (04) : 1360 - 1368
  • [37] Bonding similarities and differences between Y-Sb-Te and Sc-Sb-Te phase-change memory materials
    Zhou, Yuxing
    Sun, Liang
    Zewdie, Getasew M.
    Mazzarello, Riccardo
    Deringer, Volker L.
    Ma, Evan
    Zhang, Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (11) : 3646 - 3654
  • [38] Bonding nature and optical contrast of TiTe2/Sb2Te3 phase-change heterostructure
    Wang, Xudong
    Wu, Yue
    Zhou, Yuxing
    Deringer, Volker L.
    Zhang, Wei
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 135
  • [39] Device-scale atomistic modelling of phase-change memory materials
    Zhou, Yuxing
    Zhang, Wei
    Ma, En
    Deringer, Volker L.
    NATURE ELECTRONICS, 2023, 6 (10) : 746 - +
  • [40] Phase-change heterostructure with HfTe2 confinement sublayers for enhanced thermal efficiency and low-power operation through Joule heating localization
    Park, S. W.
    Lee, H. J.
    Nirmal, K. A.
    Kim, T. H.
    Kim, D. H.
    Choi, J. Y.
    Oh, J. S.
    Joo, J. M.
    Kim, T. G.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 204 : 104 - 114