Phase-change heterostructure enables ultralow noise and drift for memory operation

被引:321
|
作者
Ding, Keyuan [1 ,2 ]
Wang, Jiangjing [3 ,4 ]
Zhou, Yuxing [3 ]
Tian, He [5 ]
Lu, Lu [6 ]
Mazzarello, Riccardo [7 ,8 ]
Jia, Chunlin [6 ,9 ]
Zhang, Wei [3 ]
Rao, Feng [1 ,10 ]
Ma, Evan [11 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[3] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[4] Yulin Univ, Sch Chem & Chem Engn, Yulin 719000, Peoples R China
[5] Zhejiang Univ, Ctr Electron Microscopy, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[6] Xian Jiaetong Univ, Sch Microelect, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[7] Rhein Westfal TH Aachen, JARA FIT, Inst Theoret Solid State Phys, D-52074 Aachen, Germany
[8] Rhein Westfal TH Aachen, JARA HPC, D-52074 Aachen, Germany
[9] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[10] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[11] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
中国国家自然科学基金;
关键词
PLANE-WAVE; CRYSTALLIZATION; NETWORK; COHP;
D O I
10.1126/science.aay0291
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial intelligence and other data-intensive applications have escalated the demand for data storage and processing. New computing devices, such as phase-change random access memory (PCRAM)-based neuro-inspired devices, are promising options for breaking the von Neumann barrier by unifying storage with computing in memory cells. However, current PCRAM devices have considerable noise and drift in electrical resistance that erodes the precision and consistency of these devices. We designed a phase-change heterostructure (PCH) that consists of alternately stacked phase-change and confinement nanolayers to suppress the noise and drift, allowing reliable iterative RESET and cumulative SET operations for high-performance neuro-inspired computing. Our PCH architecture is amenable to industrial production as an intrinsic materials solution, without complex manufacturing procedure or much increased fabrication cost.
引用
收藏
页码:210 / +
页数:25
相关论文
共 50 条
  • [21] Tunable Phase-Change Performance of Sb-Te-Se Film for Phase Change Memory
    Ma, Yadong
    Lu, Yegang
    Li, Zengguang
    Shen, Xiang
    Wang, Guoxiang
    Liu, Yongxing
    Dai, Shixun
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2016, 5 (03) : P160 - P163
  • [22] Sb-rich Si-Sb-Te Phase-Change Material for Phase-Change Random Access Memory Applications
    Wu, Liangcai
    Zhou, Xilin
    Song, Zhitang
    Zhu, Min
    Cheng, Yan
    Rao, Feng
    Song, Sannian
    Liu, Bo
    Feng, Songlin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (12) : 4423 - 4426
  • [23] Comprehensive Phase-Change Memory Compact Model for Circuit Simulation
    Pigot, Corentin
    Bocquet, Marc
    Gilibert, Fabien
    Reyboz, Marina
    Cueto, Olga
    Della Marca, Vincenzo
    Zuliani, Paola
    Portal, Jean-Michel
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (10) : 4282 - 4289
  • [24] High-Throughput Screening for Phase-Change Memory Materials
    Liu, Yu-Ting
    Li, Xian-Bin
    Zheng, Hui
    Chen, Nian-Ke
    Wang, Xue-Peng
    Zhang, Xu-Lin
    Sun, Hong-Bo
    Zhang, Shengbai
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (21)
  • [25] Understanding Phase-Change Memory Alloys from a Chemical Perspective
    Kolobov, A. V.
    Fons, P.
    Tominaga, J.
    SCIENTIFIC REPORTS, 2015, 5
  • [26] Progress on Materials Design and Multiscale Simulations for Phase-Change Memory
    Shen, Xueyang
    Chu, Ruixuan
    Jiang, Yihui
    Zhang, Wei
    ACTA METALLURGICA SINICA, 2024, 60 (10) : 1362 - 1378
  • [27] Designing crystallization in phase-change materials for universal memory and neuro-inspired computing
    Zhang, Wei
    Mazzarello, Riccardo
    Wuttig, Matthias
    Ma, Evan
    NATURE REVIEWS MATERIALS, 2019, 4 (03) : 150 - 168
  • [28] Read Disturbances in Cross-Point Phase-Change Memory Arrays- Part I: Physical Modeling With Phase-Change Dynamics
    Kim, Donguk
    Jang, Jun Tae
    Kim, Changwook
    Kim, Hyun Wook
    Hong, Eunryeong
    Ban, Sanghyun
    Shin, Minchul
    Lee, Hanwool
    Lee, Hyung Dong
    Mo, Hyun-Sun
    Woo, Jiyong
    Kim, Dae Hwan
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (02) : 514 - 520
  • [29] Scaling of Data Retention Statistics in Phase-Change Random Access Memory
    Kwon, Yongwoo
    Park, Byoungnam
    Kang, Dae-Hwan
    IEEE ELECTRON DEVICE LETTERS, 2015, 36 (05) : 454 - 456
  • [30] A Robust and Efficient Compact Model for Phase-Change Memory Circuit Simulations
    Chen, Xuhui
    Ding, Feilong
    Huang, Xiaoqing
    Lin, Xinnan
    Wang, Runsheng
    Chan, Mansun
    Zhang, Lining
    Huang, Ru
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (09) : 4404 - 4410