Phase-change heterostructure enables ultralow noise and drift for memory operation

被引:321
|
作者
Ding, Keyuan [1 ,2 ]
Wang, Jiangjing [3 ,4 ]
Zhou, Yuxing [3 ]
Tian, He [5 ]
Lu, Lu [6 ]
Mazzarello, Riccardo [7 ,8 ]
Jia, Chunlin [6 ,9 ]
Zhang, Wei [3 ]
Rao, Feng [1 ,10 ]
Ma, Evan [11 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[3] Xi An Jiao Tong Univ, Ctr Adv Mat Performance Nanoscale, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[4] Yulin Univ, Sch Chem & Chem Engn, Yulin 719000, Peoples R China
[5] Zhejiang Univ, Ctr Electron Microscopy, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[6] Xian Jiaetong Univ, Sch Microelect, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[7] Rhein Westfal TH Aachen, JARA FIT, Inst Theoret Solid State Phys, D-52074 Aachen, Germany
[8] Rhein Westfal TH Aachen, JARA HPC, D-52074 Aachen, Germany
[9] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[10] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[11] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
中国国家自然科学基金;
关键词
PLANE-WAVE; CRYSTALLIZATION; NETWORK; COHP;
D O I
10.1126/science.aay0291
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Artificial intelligence and other data-intensive applications have escalated the demand for data storage and processing. New computing devices, such as phase-change random access memory (PCRAM)-based neuro-inspired devices, are promising options for breaking the von Neumann barrier by unifying storage with computing in memory cells. However, current PCRAM devices have considerable noise and drift in electrical resistance that erodes the precision and consistency of these devices. We designed a phase-change heterostructure (PCH) that consists of alternately stacked phase-change and confinement nanolayers to suppress the noise and drift, allowing reliable iterative RESET and cumulative SET operations for high-performance neuro-inspired computing. Our PCH architecture is amenable to industrial production as an intrinsic materials solution, without complex manufacturing procedure or much increased fabrication cost.
引用
收藏
页码:210 / +
页数:25
相关论文
共 50 条
  • [1] Multi-level phase-change memory with ultralow power consumption and resistance drift
    Liu, Bin
    Li, Kaiqi
    Liu, Wanliang
    Zhou, Jian
    Wu, Liangcai
    Song, Zhitang
    Elliott, Stephen R.
    Sun, Zhimei
    SCIENCE BULLETIN, 2021, 66 (21) : 2217 - 2224
  • [2] Spatially inhomogeneous operation of phase-change memory
    Kim, Dasol
    Hwang, Soobin
    Jung, Taek Sun
    Ahn, Min
    Jeong, Jaehun
    Park, Hanbum
    Park, Juhwan
    Kim, Jae Hoon
    Choi, Byung Joon
    Cho, Mann-Ho
    APPLIED SURFACE SCIENCE, 2022, 589
  • [3] Designing Conductive-Bridge Phase-Change Memory to Enable Ultralow Programming Power
    Yang, Zhe
    Li, Bowen
    Wang, Jiang-Jing
    Wang, Xu-Dong
    Xu, Meng
    Tong, Hao
    Cheng, Xiaomin
    Lu, Lu
    Jia, Chunlin
    Xu, Ming
    Miao, Xiangshui
    Zhang, Wei
    Ma, En
    ADVANCED SCIENCE, 2022, 9 (08)
  • [4] Modeling of Threshold-Voltage Drift in Phase-Change Memory (PCM) Devices
    Ciocchini, Nicola
    Cassinerio, Marco
    Fugazza, Davide
    Ielmini, Daniele
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (11) : 3084 - 3090
  • [5] A Finite Element Model for Stochastic Set Operation in Phase-Change Memory
    Shin, Min-Kyu
    Lee, Donghwa
    Cha, Pil-Ryung
    Kwon, Yongwoo
    2019 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2019, : 294 - 295
  • [6] Interfacial phase-change memory
    Simpson, R. E.
    Fons, P.
    Kolobov, A. V.
    Fukaya, T.
    Krbal, M.
    Yagi, T.
    Tominaga, J.
    NATURE NANOTECHNOLOGY, 2011, 6 (08) : 501 - 505
  • [7] Chemical understanding of resistance drift suppression in Ge-Sn-Te phase-change memory materials
    Chen, Yuhan
    Sun, Liang
    Zhou, Yuxing
    Zewdie, Getasew M.
    Deringer, Volker L.
    Mazzarello, Riccardo
    Zhang, Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (01) : 71 - 77
  • [8] Outstanding phase-change behaviors of GaGeSbTe material for phase-change memory application
    Fang, Wencheng
    Song, Sannian
    Zhao, Jin
    Li, Chengxing
    Cai, Daolin
    Song, Zhitang
    MATERIALS RESEARCH BULLETIN, 2022, 149
  • [9] Spatially inhomogeneous operation of phase-change memory (vol 589, 153026, 2022)
    Kim, Dasol
    Hwang, Soobin
    Jung, Taek Sun
    Ahn, Min
    Jeong, Jaehun
    Park, Hanbum
    Park, Juhwan
    Kim, Jae Hoon
    Choi, Byung Joon
    Cho, Mann-Ho
    APPLIED SURFACE SCIENCE, 2022, 602
  • [10] Effect of Transition Metal Dichalcogenide Based Confinement Layers on the Performance of Phase-Change Heterostructure Memory
    Kim, Tae Ho
    Park, Seung Woo
    Lee, Ho Jin
    Kim, Dong Hyun
    Choi, Jun Young
    Kim, Tae Geun
    SMALL, 2023, 19 (48)