Redox Control of Skeletal Muscle Regeneration

被引:155
作者
Le Moal, Emmeran [1 ,2 ]
Pialoux, Vincent [3 ,4 ]
Juban, Gaetan [1 ]
Groussard, Carole [2 ]
Zouhal, Hassane [2 ]
Chazaud, Benedicte [1 ]
Mounier, Remi [1 ]
机构
[1] Univ Claude Bernard Lyon 1, CNRS UMR 5310, Inst NeuroMyoGene, INSERM U1217, Batiment Gregor Mendel 16,Rue Raphael Dubois, F-69622 Villeurbanne, France
[2] Univ Rennes 2, Movement Sport & Hlth Sci Lab, M2S, EA1274, Bruz, France
[3] Univ Claude Bernard Lyon 1, Univ Lyon, Lab Interuniv Biol Motricite, EA7424, Villeurbanne, France
[4] Inst Univ France, Paris, France
关键词
muscle stem cells; oxidative stress; skeletal muscle regeneration; NITRIC-OXIDE SYNTHASE; NF-KAPPA-B; SATELLITE CELL ACTIVATION; ENDOTHELIAL GROWTH-FACTOR; ENDOPLASMIC-RETICULUM STRESS; ELECTRON-TRANSPORT CHAIN; PLASMA-MEMBRANE REPAIR; BLOOD OXIDATIVE-STRESS; OXYGEN SPECIES ROS; REACTIVE OXYGEN;
D O I
10.1089/ars.2016.6782
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function.
引用
收藏
页码:276 / 310
页数:35
相关论文
共 364 条
[1]   Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Rac1-regulated NADPH oxidase-dependent mechanism [J].
Abid, MR ;
Tsai, JC ;
Spokes, KC ;
Deshpande, SS ;
Irani, K ;
Aird, WC .
FASEB JOURNAL, 2001, 15 (11) :2548-+
[2]   Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal [J].
Abou-Khalil, Rana ;
Le Grand, Fabien ;
Pallafacchina, Giorgia ;
Valable, Samuel ;
Authier, Francois-Jerome ;
Rudnicki, Michael A. ;
Gherardi, Romain K. ;
Germain, Stephane ;
Chretien, Fabrice ;
Sotiropoulos, Athanassia ;
Lafuste, Peggy ;
Montarras, Didier ;
Chazaud, Benedicte .
CELL STEM CELL, 2009, 5 (03) :298-309
[3]   Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy [J].
Acharyya, Swarnali ;
Villalta, S. Armando ;
Bakkar, Nadine ;
Bupha-Intr, Tepmanas ;
Janssen, Paul M. L. ;
Carathers, Micheal ;
Li, Zhi-Wei ;
Beg, Amer A. ;
Ghosh, Sankar ;
Sahenk, Zarife ;
Weinstein, Michael ;
Gardner, Katherine L. ;
Rafael-Fortney, Jill A. ;
Karin, Michael ;
Tidball, James G. ;
Baldwin, Albert S. ;
Guttridge, Denis C. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (04) :889-901
[4]   Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury [J].
Al-Sawaf, Othman ;
Fragoulis, Athanassios ;
Rosen, Christian ;
Keimes, Nora ;
Liehn, Elisa Anamaria ;
Hoelzle, Frank ;
Kan, Yuet Wai ;
Pufe, Thomas ;
Soenmez, Tolga Taha ;
Wruck, Christoph Jan .
JOURNAL OF PATHOLOGY, 2014, 234 (04) :538-547
[5]   In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis [J].
Albrecht, Simone C. ;
Barata, Ana Gomes ;
Grosshans, Joerg ;
Teleman, Aurelio A. ;
Dick, Tobias P. .
CELL METABOLISM, 2011, 14 (06) :819-829
[6]   ABSENCE OF DYSTROPHIN DISRUPTS SKELETAL MUSCLE SIGNALING: ROLES OF Ca2+, REACTIVE OXYGEN SPECIES, AND NITRIC OXIDE IN THE DEVELOPMENT OF MUSCULAR DYSTROPHY [J].
Allen, David G. ;
Whitehead, Nicholas P. ;
Froehner, Stanley C. .
PHYSIOLOGICAL REVIEWS, 2016, 96 (01) :253-305
[7]   Oxidative stress and gene regulation [J].
Allen, RG ;
Tresini, M .
FREE RADICAL BIOLOGY AND MEDICINE, 2000, 28 (03) :463-499
[8]   Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement [J].
Altenhofer, Sebastian ;
Radermacher, Kim A. ;
Kleikers, Pamela W. M. ;
Wingler, Kirstin ;
Schmidt, Harald H. H. W. .
ANTIOXIDANTS & REDOX SIGNALING, 2015, 23 (05) :406-427
[9]   Regulation of satellite cell function in sarcopenia [J].
Alway, Stephen E. ;
Myers, Matthew J. ;
Mohamed, Junaith S. .
FRONTIERS IN AGING NEUROSCIENCE, 2014, 6
[10]   A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells [J].
Anderson, JE .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (05) :1859-1874