Pulsating, creeping, and erupting solitons in dissipative systems

被引:366
作者
Soto-Crespo, JM
Akhmediev, N
Ankiewicz, A
机构
[1] CSIC, Inst Opt, E-28006 Madrid, Spain
[2] Australian Natl Univ, Ctr Opt Sci, Res Sch Phys Sci & Engn, Canberra, ACT 0200, Australia
关键词
D O I
10.1103/PhysRevLett.85.2937
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present three novel pulsating solutions of the cubic-quintic complex Ginzburg-Landau equation. They describe some complicated pulsating behavior of solitons in dissipative systems; We study their main features and the regions of parameter space where they exist.
引用
收藏
页码:2937 / 2940
页数:4
相关论文
共 21 条
[1]   NOVEL ARBITRARY-AMPLITUDE SOLITON-SOLUTIONS OF THE CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
AKHMEDIEV, N ;
AFANASJEV, VV .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2320-2323
[2]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[3]   Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity [J].
Artigas, D ;
Torner, L ;
Torres, JP ;
Akhmediev, NN .
OPTICS COMMUNICATIONS, 1997, 143 (4-6) :322-328
[4]   FORMATIONS OF SPATIAL PATTERNS AND HOLES IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
BEKKI, N ;
NOZAKI, K .
PHYSICS LETTERS A, 1985, 110 (03) :133-135
[5]   COUPLED-CAVITY MODE-LOCKING - A NONLINEAR MODEL [J].
BELANGER, PA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (10) :2077-2081
[6]   LINEARITY INSIDE NONLINEARITY - EXACT-SOLUTIONS TO THE COMPLEX GINZBURG-LANDAU EQUATION [J].
CONTE, R ;
MUSETTE, M .
PHYSICA D, 1993, 69 (1-2) :1-17
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]   PERIODIC, QUASI-PERIODIC, AND CHAOTIC LOCALIZED SOLUTIONS OF THE QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICAL REVIEW LETTERS, 1994, 72 (04) :478-481
[9]   SOLITARY WAVES GENERATED BY SUBCRITICAL INSTABILITIES IN DISSIPATIVE SYSTEMS [J].
FAUVE, S ;
THUAL, O .
PHYSICAL REVIEW LETTERS, 1990, 64 (03) :282-284
[10]   Optical bullet holes: Robust controllable localized states of a nonlinear cavity [J].
Firth, WJ ;
Scroggie, AJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (10) :1623-1626