The Dantzig selector for a linearmodel of diffusion processes

被引:6
|
作者
Fujimori, Kou [1 ]
机构
[1] Waseda Univ, Shinjuku Ku, 3-4-1 Okubo, Tokyo, Japan
关键词
Diffusion process; High-dimension; Sparse estimation; Variable selection; Dantzig selector; MATRIX ESTIMATION; COEFFICIENT; SHRINKAGE; LASSO;
D O I
10.1007/s11203-018-9191-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a linear model of diffusion processes with unknown drift and diagonal diffusion matrices is discussed. We will consider the estimation problems for unknown parameters based on the discrete time observation in high-dimensional and sparse settings. To estimate drift matrices, the Dantzig selector which was proposed by Candes and Tao in 2007 will be applied. We will prove two types of consistency of the Dantzig selector for the drift matrix; one is the consistency in the sense of l(q) norm for every q is an element of [1, infinity] and another is the variable selection consistency. Moreover, we will construct an asymptotically normal estimator for the drift matrix by using the variable selection consistency of the Dantzig selector.
引用
收藏
页码:475 / 498
页数:24
相关论文
共 50 条
  • [31] Generalized Dantzig Selector: Application to the k-support norm
    Chatterjee, Soumyadeep
    Chen, Sheng
    Banerjee, Arindam
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [32] Parallelism, uniqueness, and large-sample asymptotics for the Dantzig selector
    Dicker, Lee
    Lin, Xihong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (01): : 23 - 35
  • [33] Asymtotics of Dantzig Selector for a General Single-Index Model
    FAN Yan
    GAI Yujie
    ZHU Lixing
    JournalofSystemsScience&Complexity, 2016, 29 (04) : 1123 - 1144
  • [34] Asymtotics of Dantzig selector for a general single-index model
    Yan Fan
    Yujie Gai
    Lixing Zhu
    Journal of Systems Science and Complexity, 2016, 29 : 1123 - 1144
  • [35] EFFICIENT SPARSE HESSIAN-BASED SEMISMOOTH NEWTON ALGORITHMS FOR DANTZIG SELECTOR\ast
    Fang, Sheng
    Liu, Yong-Jin
    Xiong, Xianzhu
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (06) : A4147 - A4171
  • [36] Simultaneous Lasso and Dantzig Selector in High Dimensional Nonparametric Regression
    Wang, Shiqing
    Su, Limin
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 42 (12): : 103 - 118
  • [37] SOCP based variance free Dantzig Selector with application to robust estimation
    Dalalyan, Arnak S.
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (15-16) : 785 - 788
  • [38] Dantzig-Selector Radial Basis Function Learning with Nonconvex Refinement
    Ghosh, Tomojit
    Kirby, Michael
    Ma, Xiaofeng
    ADVANCES IN TIME SERIES ANALYSIS AND FORECASTING, 2017, : 313 - 327
  • [39] Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls
    Ye, Fei
    Zhang, Cun-Hui
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3519 - 3540
  • [40] Separation of undersampled composite signals using the Dantzig selector with overcomplete dictionaries
    Prater, Ashley
    Shen, Lixin
    IET SIGNAL PROCESSING, 2015, 9 (03) : 226 - 234