Anyons in quantum mechanics with a minimal length

被引:0
作者
Buisseret, Fabien [1 ,2 ]
机构
[1] Haute Ecole Louvain Hainaut HELHa, Chaussee Binche 159, B-7000 Mons, Belgium
[2] Univ Mons UMONS, Serv Phys Nucl & Subnucl, Pl Parc 20, B-7000 Mons, Belgium
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2017年 / 132卷 / 02期
关键词
DEFORMED HEISENBERG ALGEBRA; FRACTIONAL-SPIN; FIELD-THEORY; STATISTICS; EQUATIONS;
D O I
10.1140/epjp/i2017-11350-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of anyons, i.e. quantum states with an arbitrary spin, is a generic feature of standard quantum mechanics in (2 + 1)-dimensional Minkowski spacetime. Here it is shown that relativistic anyons may exist also in quantum theories where a minimal length is present. The interplay between minimal length and arbitrary spin effects are discussed.
引用
收藏
页数:4
相关论文
共 28 条
[1]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[2]   ON NON-COMPACT GROUPS .2. REPRESENTATIONS OF THE 2+1 LORENTZ GROUP [J].
BARUT, AO ;
FRONSDAL, C .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 287 (1411) :532-&
[3]   RELATIVISTIC FIELD-THEORIES IN 3 DIMENSIONS [J].
BINEGAR, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (08) :1511-1517
[4]   The exact solutions of a (2+1)-dimensional Dirac oscillator under a magnetic field in the presence of a minimal length [J].
Boumali, Abdelmalek ;
Hassanabadi, Hassan .
CANADIAN JOURNAL OF PHYSICS, 2015, 93 (05) :542-548
[5]   Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[6]   LINEAR-DIFFERENTIAL EQUATIONS FOR A FRACTIONAL SPIN FIELD [J].
CORTES, JL ;
PLYUSHCHAY, MS .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) :6049-6057
[7]   QUANTUM-MECHANICS AND FIELD-THEORY WITH FRACTIONAL SPIN AND STATISTICS [J].
FORTE, S .
REVIEWS OF MODERN PHYSICS, 1992, 64 (01) :193-236
[8]   QUANTUM-FIELD THEORY OF ANYONS [J].
FROHLICH, J ;
MARCHETTI, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 16 (04) :347-358
[9]   STRING THEORY BEYOND THE PLANCK SCALE [J].
GROSS, DJ ;
MENDE, PF .
NUCLEAR PHYSICS B, 1988, 303 (03) :407-454
[10]   Maximal localization in the presence of minimal uncertainties in positions and in momenta [J].
Hinrichsen, H ;
Kempf, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2121-2137