Graphene BioFET sensors for SARS-CoV-2 detection: a multiscale simulation approach

被引:6
作者
Toral-Lopez, A. [1 ]
Kokh, D. B. [2 ]
Marin, E. G. [1 ]
Wade, R. C. [2 ,3 ,4 ]
Godoy, A. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Elect & Tecnol Computadores, Granada, Spain
[2] Heidelberg Inst Theoret Studies, Mol & Cellular Modeling Grp, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
[3] Heidelberg Univ, Ctr Mol Biol ZMBH, DKFZ ZMBH Alliance, Neuenheimer Feld 282, D-69120 Heidelberg, Germany
[4] Heidelberg Univ, Interdisciplinary Ctr Sci Comp IWR, Neuenheimer Feld 205, Heidelberg, Germany
来源
NANOSCALE ADVANCES | 2022年 / 4卷 / 14期
关键词
FIELD-EFFECT TRANSISTORS; PERFORMANCE; BIOSENSOR; CONTACTS; MODELS; SPIKE;
D O I
10.1039/d2na00357k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biological Field-Effect Transistors (BioFETs) have already demonstrated enormous potential for detecting minute amounts of ions and molecules. The use of two-dimensional (2D) materials has been shown to boost their performance and to enable the design of new applications. This combination deserves special interest in the current pandemic caused by the SARS-CoV-2 virus which demands fast, reliable and cheap detection methods. However, in spite of the experimental advances, there is a lack of a comprehensive and in-depth computational approach to capture the mechanisms underlying the sensor behaviour. Here, we present a multiscale platform that combines detailed atomic models of the molecules with mesoscopic device-level simulations. The fine-level description exploited in this approach accounts for the charge distribution of the receptor, its reconfiguration when the target binds to it, and the consequences in terms of sensitivity on the transduction mechanism. The results encourage the further exploration of improved sensor designs and 2D materials combined with diverse receptors selected to achieve the desired specificity.
引用
收藏
页码:3065 / 3072
页数:8
相关论文
共 47 条
[1]   Electrical contacts to two-dimensional semiconductors [J].
Allain, Adrien ;
Kang, Jiahao ;
Banerjee, Kaustav ;
Kis, Andras .
NATURE MATERIALS, 2015, 14 (12) :1195-1205
[2]   Graphene field-effect transistors as bioanalytical sensors: design, operation and performance [J].
Beraud, Anouk ;
Sauvage, Madline ;
Bazan, Claudia M. ;
Tie, Monique ;
Bencherif, Amira ;
Bouilly, Delphine .
ANALYST, 2021, 146 (02) :403-428
[4]   Electrical characterization and parameter extraction of organic thin film transistors using two dimensional numerical simulations [J].
Bhargava, Kshitij ;
Singh, Vipul .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (03) :585-592
[5]   Steric effects in electrolytes: A modified Poisson-Boltzmann equation [J].
Borukhov, I ;
Andelman, D ;
Orland, H .
PHYSICAL REVIEW LETTERS, 1997, 79 (03) :435-438
[6]   A first principles theoretical examination of graphene-based field effect transistors [J].
Champlain, James G. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[7]   Simulation study on discrete charge effects of SiNW biosensors according to bound target position using a 3D TCAD simulator [J].
Chung, In-Young ;
Jang, Hyeri ;
Lee, Jieun ;
Moon, Hyunggeun ;
Seo, Sung Min ;
Kim, Dae Hwan .
NANOTECHNOLOGY, 2012, 23 (06)
[8]   Trilayer TMDC Heterostructures for MOSFETs and Nanobiosensors [J].
Datta, Kanak ;
Shadman, Abir ;
Rahman, Ehsanur ;
Khosru, Quazi D. M. .
JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (02) :1248-1260
[9]   Measurement of ultrafast carrier dynamics in epitaxial graphene [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)
[10]   PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations [J].
Dolinsky, TJ ;
Nielsen, JE ;
McCammon, JA ;
Baker, NA .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W665-W667