Vertex-transitive median graphs of non-exponential growth

被引:2
作者
Marc, Tilen [1 ]
机构
[1] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
Median graphs; Infinite graphs; Growth rate of graphs; Vertex-transitive graphs; Cartesian product of graphs; POLYNOMIAL-GROWTH; HYPERCUBES;
D O I
10.1016/j.disc.2014.11.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize vertex-transitive median graphs of non-exponential growth as the Cartesian products of finite hypercubes with finite dimensional lattice graphs. Additionally, we prove that every median graph without convex subgraphs isomorphic to K-1,K-3 or the 4-pan graph is isomorphic to the weak Cartesian product of finite paths, rays and two way infinite paths. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 11 条
[1]   INFINITE MEDIAN GRAPHS, (0,2)-GRAPHS, AND HYPERCUBES [J].
BANDELT, HJ ;
MULDER, HM .
JOURNAL OF GRAPH THEORY, 1983, 7 (04) :487-497
[2]   RETRACTS OF HYPERCUBES [J].
BANDELT, HJ .
JOURNAL OF GRAPH THEORY, 1984, 8 (04) :501-510
[3]  
Hammack R., 2011, HDB PRODUCT GRAPHS, V2, DOI [10.1201/b10959, DOI 10.1201/B10959]
[4]   EMBEDDING GRAPHS INTO CARTESIAN PRODUCTS [J].
IMRICH, W .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 :266-274
[5]   A SURVEY ON GRAPHS WITH POLYNOMIAL-GROWTH [J].
IMRICH, W ;
SEIFTER, N .
DISCRETE MATHEMATICS, 1991, 95 (1-3) :101-117
[6]   Two-ended regular median graphs [J].
Imrich, Wilfried ;
Klavzar, Sandi .
DISCRETE MATHEMATICS, 2011, 311 (15) :1418-1422
[7]  
KLAvzAR S., 1999, J. Combin. Math. Combin. Comput., V30, P103
[8]   Lattices in graphs with polynomial growth [J].
Lukacs, A ;
Seifter, N .
DISCRETE MATHEMATICS, 1998, 186 (1-3) :227-236
[9]   Finite contractions of graphs with polynomial growth [J].
Lukács, A ;
Seifter, N .
EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (01) :85-90
[10]   Regular median graphs of linear growth [J].
Marc, Tilen .
DISCRETE MATHEMATICS, 2014, 324 :1-3