Inside information on xenon adsorption in porous organic cages by NMR

被引:37
作者
Komulainen, Sanna [1 ]
Roukala, Juho [1 ]
Zhivonitko, Vladimir V. [2 ]
Javed, Muhammad Asadullah [1 ]
Chen, Linjiang [3 ]
Holden, Daniel [3 ]
Hasell, Tom [3 ]
Cooper, Andrew [3 ]
Lantto, Perttu [1 ]
Telkki, Ville-Veikko [1 ]
机构
[1] Univ Oulu, NMR Res Unit, POB 3000, Oulu 90014, Finland
[2] Novosibirsk State Univ, Int Tomog Ctr SB RAS, Dept Nat Sci, Lab Magnet Resonance Microimaging, Inst Skaya St 3A,Pirogova St 2, Novosibirsk 630090, Russia
[3] Univ Liverpool, Ctr Mat Discovery, Dept Chem, Crown St, Liverpool L69 7ZD, Merseyside, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 芬兰科学院;
关键词
ORDER REGULAR APPROXIMATION; ULTRASENSITIVE XE-129 NMR; MAGNETIC-RESONANCE; CHEMICAL-SHIFT; STIMULATED ECHO; BASIS-SETS; EXCHANGE; DIFFUSION; MOLECULES; FRAMEWORK;
D O I
10.1039/c7sc01990d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A solid porous molecular crystal formed from an organic cage, CC3, has unprecedented performance for the separation of rare gases. Here, xenon was used as an internal reporter providing extraordinarily versatile information about the gas adsorption phenomena in the cage and window cavities of the material. Xe-129 NMR measurements combined with state-of-the-art quantum chemical calculations allowed the determination of the occupancies of the cavities, binding constants, thermodynamic parameters as well as the exchange rates of Xe between the cavities. Chemical exchange saturation transfer (CEST) experiments revealed a minor window cavity site with a significantly lower exchange rate than other sites. Diffusion measurements showed significantly reduced mobility of xenon with loading. Xe-129 spectra also revealed that the cage cavity sites are preferred at lower loading levels, due to more favourable binding, whereas window sites come to dominate closer to saturation because of their greater prevalence.
引用
收藏
页码:5721 / 5727
页数:7
相关论文
共 74 条
  • [1] Abragam A, 1974, PRINCIPLES NUCL MAGN
  • [2] ALBERT MS, 1994, NATURE, V370, P199, DOI 10.1038/370199a0
  • [3] [Anonymous], 2007, TURBOMOLE V6.5 2013,A Development of University of Karlsruhe andForschungszentrum Karlsruhe GmbH, 1989
  • [4] [Anonymous], THEORETICAL CHEM
  • [5] Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR
    Bai, Yubin
    Wang, Yanfei
    Goulian, Mark
    Driks, Adam
    Dmochowski, Ivan J.
    [J]. CHEMICAL SCIENCE, 2014, 5 (08) : 3197 - 3203
  • [6] Utilizing a Water-Soluble Cryptophane with Fast Xenon Exchange Rates for Picomolar Sensitivity NMR Measurements
    Bai, Yubin
    Hill, P. Aru
    Dmochowski, Ivan J.
    [J]. ANALYTICAL CHEMISTRY, 2012, 84 (22) : 9935 - 9941
  • [7] Chemical exchange in NMR
    Bain, AD
    [J]. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 2003, 43 (3-4) : 63 - 103
  • [8] NMR Hyperpolarization Techniques of Gases
    Barskiy, Danila A.
    Coffey, Aaron M.
    Nikolaou, Panayiotis
    Mikhaylov, Dmitry M.
    Goodson, Boyd M.
    Branca, Rosa T.
    Lu, George J.
    Shapiro, Mikhail G.
    Telkki, Ville-Veikko
    Zhivonitko, Vladimir V.
    Koptyug, Igor V.
    Salnikov, Oleg G.
    Kovtunov, Kirill V.
    Bukhtiyarov, Valerii I.
    Rosen, Matthew S.
    Barlow, Michael J.
    Safavi, Shahideh
    Hall, Ian P.
    Schroeder, Leif
    Chekmenev, Eduard Y.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (04) : 725 - 751
  • [9] Bartik K, 2005, ACTUAL CHIMIQUE, P16
  • [10] DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE
    BECKE, AD
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) : 5648 - 5652