A Serrin Type Criterion for Incompressible Hydrodynamic Flow of Liquid Crystals in Dimension Three

被引:4
作者
Huang, Bingyuan [1 ]
机构
[1] Hanshan Normal Univ, Dept Basic Educ, Chaozhou 521041, Peoples R China
关键词
Liquid crystals; incompressible flow; strong solutions; Serrin type criterion; REGULARITY; EQUATIONS;
D O I
10.2298/FIL1407445H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we establish a Serrin type criterion for strong solutions to a simplified density-dependent Ericksen-Leslie system modeling incompressible, nematic liquid crystal materials in dimension three. The density may vanish in an open subset of Omega. As a byproduct, we establish the Serrin type criterion for heat flow of harmonic map whose gradients belong to L-x(r) L-t(s), where 2/s + 3/r <= 1, for 3 < r <= infinity.
引用
收藏
页码:1445 / 1456
页数:12
相关论文
共 42 条
[21]   A regularity criterion for a density-dependent incompressible liquid crystals model with vacuum [J].
Fan, Jishan ;
Samet, Bessem ;
Zhou, Yong .
HIROSHIMA MATHEMATICAL JOURNAL, 2019, 49 (01) :129-138
[22]   Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions [J].
Ding ShiJin ;
Huang JinRui ;
Lin JunYu .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) :2233-2250
[23]   Recent developments of analysis for hydrodynamic flow of nematic liquid crystals [J].
Lin, Fanghua ;
Wang, Changyou .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2029)
[24]   Space-Time Decay Estimates for the Incompressible Flow of Liquid Crystals [J].
Bie, Qunyi ;
Deng, Xuemei ;
Ma, Deyi .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2019, 21 (01)
[25]   Global large solutions and incompressible limit for the compressible flow of liquid crystals [J].
Zhai, Xiaoping ;
Chen, Zhi-Min .
APPLICABLE ANALYSIS, 2021, 100 (10) :2132-2146
[26]   Weak Serrin-type criterion for the three-dimensional viscous compressible Navier-Stokes system [J].
Wang, Yongfu .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (01) :125-142
[27]   On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces [J].
Lin, Junyu ;
Ding, Shijin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (02) :158-173
[28]   Weak-strong uniqueness for three dimensional incompressible active liquid crystals [J].
Yang, Fan ;
Li, Congming .
ACTA MATHEMATICA SCIENTIA, 2024, 44 (04) :1415-1440
[29]   Regularity and uniqueness for a class of solutions to the hydrodynamic flow of nematic liquid crystals [J].
Huang, Tao .
ANALYSIS AND APPLICATIONS, 2016, 14 (04) :523-536
[30]   WEAK-STRONG UNIQUENESS OF HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS [J].
Zhao, Ji-hong ;
Liu, Qiao .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,