Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design

被引:105
作者
Chen, Wei [1 ]
Tan, Aik Rui [2 ]
Ferguson, Andrew L. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mat Sci & Engn, 1304 West Green St, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Biomol & Chem Engn, 600 South Mathews Ave, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
NONLINEAR DIMENSIONALITY REDUCTION; MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY LANDSCAPES; VARIATIONAL APPROACH; TRP-CAGE; METADYNAMICS; EXPLORATION; PATHWAYS; KINETICS; MOTIONS;
D O I
10.1063/1.5023804
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Auto-associative neural networks ("autoencoders") present a powerful nonlinear dimensionality reduction technique to mine data-driven collective variables from molecular simulation trajectories. This technique furnishes explicit and differentiable expressions for the nonlinear collective variables, making it ideally suited for integration with enhanced sampling techniques for accelerated exploration of configurational space. In this work, we describe a number of sophistications of the neural network architectures to improve and generalize the process of interleaved collective variable discovery and enhanced sampling. We employ circular network nodes to accommodate periodicities in the collective variables, hierarchical network architectures to rank-order the collective variables, and generalized encoder-decoder architectures to support bespoke error functions for network training to incorporate prior knowledge. We demonstrate our approach in blind collective variable discovery and enhanced sampling of the configurational free energy landscapes of alanine dipeptide and Trp-cage using an open-source plugin developed for the OpenMM molecular simulation package. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 106 条
[1]   Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration [J].
Abrams, Cameron ;
Bussi, Giovanni .
ENTROPY, 2014, 16 (01) :163-199
[2]   On-the-fly free energy parameterization via temperature accelerated molecular dynamics [J].
Abrams, Cameron F. ;
Vanden-Eijnden, Eric .
CHEMICAL PHYSICS LETTERS, 2012, 547 :114-119
[3]   Efficient and Direct Generation of Multidimensional Free Energy Surfaces via Adiabatic Dynamics without Coordinate Transformations [J].
Abrams, Jerry B. ;
Tuckerman, Mark E. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (49) :15742-15757
[4]  
Al-Rfou R., 2016, Theano: A Python framework for fast computation of mathematical expressions, V472, P473
[5]  
Allen M.P., 1987, Computer simulation of liquids
[6]   Dihedral angle principal component analysis of molecular dynamics simulations [J].
Altis, Alexandros ;
Nguyen, Phuong H. ;
Hegger, Rainer ;
Stock, Gerhard .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (24)
[7]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[8]  
Amodei D, 2016, PR MACH LEARN RES, V48
[9]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[10]  
[Anonymous], ARXIV171108576