Bifunctional SnO2 Colloid Offers No Annealing Effect Compact Layer and Mesoporous Scaffold for Efficient Perovskite Solar Cells

被引:24
作者
Xiong, Liangbin [1 ]
Li, Jiashuai [2 ]
Ye, Feihong [2 ]
Wang, Haibing [2 ]
Guo, Yaxiong [3 ]
Ming, Xing [4 ]
Chen, Qingyun [4 ]
Zhang, Shaoan [1 ]
Xie, Ruihao [1 ]
Chen, Zhanxu [1 ]
Lv, Yang [1 ]
Hu, Guangqi [1 ]
He, Yingji [1 ]
Fang, Guojia [2 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Optoelect Engn, Guangzhou 510665, Peoples R China
[2] Wuhan Univ, Lab Artificial Micro & Nanostruct, Minist Educ China, Sch Phys & Technol, Wuhan 430072, Peoples R China
[3] Huazhong Agr Univ, Coll Sci, Wuhan 430070, Peoples R China
[4] Guilin Univ Technol, Key Lab New Proc Technol Nonferrous Met & Mat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
high temperature processes; mesoporous perovskite solar cells; SnO2; compact layers; tin oxide; ELECTRON SELECTIVE CONTACT; LOW-TEMPERATURE; TIN OXIDE; CONTROLLABLE SYNTHESIS; QUANTUM DOTS; STABILITY; NANOPARTICLES; NANOCRYSTALS; HYSTERESIS; DEPOSITION;
D O I
10.1002/adfm.202103949
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnO2 compact layer (c-SnO2) frequently suffers from degradation in high temperature processes (HTP) such as crack, worse interfacial contact, and electrical properties, that is, annealing effect. To solve this problem, a kind of bifunctional SnO2 colloid is developed by using small molecular oxalate whose organic components can be removed clearly at a low temperature process (LTP). The c-SnO2 and SnO2 mesoporous layer (m-SnO2) derived from the fresh and aged sols with the same colloid show no annealing effect, decreasing oxygen vacancy, and adsorbing water on increasing annealing temperature. The champion devices of LTP and HTP SnO2 planar perovskite solar cells (PSCs) achieve, respectively, stabilized photoelectric conversion efficiencies (PCEs) of 20.74% and 20.70%. In contrast, the performance of champion devices of their mesoporous counterparts is significantly improved, showing nearly hysteresis free character with stabilized PCEs of 22.40% and 22.37%, respectively. The inclusion of m-SnO2 plays a role of an energy bridge, improving electrons collection efficiency, which is supported by photoluminescence and transient photoluminescence characterizations. HTP SnO2 mesoporous PSCs can preserve 97.6% and 80% of their initial PCEs after aging for 25 weeks and 8-h irradiated/16-h dark cycle within 104 h. The high stability of HTP SnO2 PSCs may ascribe to low oxygen vacancy and adsorbed water of HTP SnO2.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Efficient Perovskite Solar Cells by using combustion SnO2 A as electron Transporting Layer in low temperature [J].
Zheng, Ding ;
Qin, Ruiheng ;
Wu, Mengge ;
Yu, Junsheng .
9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTOELECTRONIC MATERIALS AND DEVICES FOR SENSING AND IMAGING, 2019, 10843
[32]   Tailored electronic properties of Zr-doped SnO2 nanoparticles for efficient planar perovskite solar cells with marginal hysteresis [J].
Noh, Young Wook ;
Lee, Ju Ho ;
Jin, In Su ;
Park, Sang Hyun ;
Jung, Jae Woong .
NANO ENERGY, 2019, 65
[33]   Low Temperature Solution-Processed Sb:SnO2 Nanocrystals for Efficient Planar Perovskite Solar Cells [J].
Bai, Yang ;
Fang, Yanjun ;
Deng, Yehao ;
Wang, Qi ;
Zhao, Jingjing ;
Zheng, Xiaopeng ;
Zhang, Yang ;
Huang, Jinsong .
CHEMSUSCHEM, 2016, 9 (18) :2686-2691
[34]   Modulation of SnO2 Electron-Transporting Materials in Perovskite Solar Cells [J].
Tang, Xinsheng ;
Wang, Zilong ;
Chen, Shangshang .
SOLAR RRL, 2025, 9 (13)
[35]   Spray-coated monodispersed SnO2 microsphere films as scaffold layers for efficient mesoscopic perovskite solar cells [J].
Fan, Xinyi ;
Rui, Yichuan ;
Han, Xuefei ;
Yang, Jingxia ;
Wang, Yuanqiang ;
Zhang, Qinghong .
JOURNAL OF POWER SOURCES, 2020, 448
[36]   Polysaccharide-Modified SnO2 for Highly Efficient Perovskite Solar Cells [J].
He, Jingjing ;
Xu, Xiaolei ;
Dai, Yuanyuan ;
Xue, Daxiang ;
Zhang, Pengfei ;
Niu, Qiang .
SOLAR RRL, 2024, 8 (11)
[37]   Multifunctional zwitterion modified SnO2 nanoparticles for efficient and stable planar perovskite solar cells [J].
Li, Benyi ;
Wang, Peng ;
Shao, Mengting ;
Bao, Jiahui ;
Wu, Xiaoping ;
Lin, Ping ;
Xu, Lingbo ;
Yu, Xuegong ;
Cui, Can .
ORGANIC ELECTRONICS, 2022, 106
[38]   Low-temperature bromide modification of SnO2 for highly efficient perovskite solar cells [J].
Liu, Wei ;
Ma, Zhijie ;
Wang, Shubo ;
Jiang, Jun ;
Yuan, Ningyi ;
Ding, Jianning .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (12) :3751-3759
[39]   Improving the Extraction of Photogenerated Electrons with SnO2 Nanocolloids for Efficient Planar Perovskite Solar Cells [J].
Rao, Hua-Shang ;
Chen, Bai-Xue ;
Li, Wen-Guang ;
Xu, Yang-Fan ;
Chen, Hong-Yan ;
Kuang, Dai-Bin ;
Su, Cheng-Yong .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (46) :7200-7207
[40]   Effect of tantalum doping on SnO2 electron transport layer via low temperature process for perovskite solar cells [J].
Liu, Qi ;
Zhang, Xin ;
Li, Chongyuan ;
Lu, Haizhou ;
Weng, Zhenhua ;
Pan, Yiyi ;
Chen, Wei ;
Hang, Xiao-Chun ;
Sun, Zhengyi ;
Zhan, Yiqiang .
APPLIED PHYSICS LETTERS, 2019, 115 (14)