Phase-field simulations of crystal growth in a two-dimensional cavity flow

被引:19
作者
Lee, Seunggyu [1 ]
Li, Yibao [2 ]
Shin, Jaemin [3 ]
Kim, Junseok [4 ]
机构
[1] Natl Inst Math Sci, Daejeon 34047, South Korea
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Ewha W Univ, Inst Math Sci, Seoul 120750, South Korea
[4] Korea Univ, Dept Math, Seoul 136713, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Crystal growth; Phase-field method; Moving overset grid; Cavity flow; BINARY ALLOY SOLIDIFICATION; DENDRITIC GROWTH; MELT CONVECTION; MODEL; SHEAR;
D O I
10.1016/j.cpc.2017.03.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider a phase-field model for dendritic growth in a two-dimensional cavity flow and propose a computationally efficient numerical method for solving the model. The crystal is fixed in the space and cannot be convected in most of the previous studies, instead the supercooled melt flows around the crystal, which is hard to be realized in the real world experimental setting. Applying advection to the crystal equation, we have problems such as deformation of crystal shape and ambiguity of the crystal orientation for the anisotropy. To resolve these difficulties, we present a phase-field method by using a moving overset grid for the dendritic growth in a cavity flow. Numerical results show that the proposed method can predict the crystal growth under flow. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 94
页数:11
相关论文
共 40 条
[1]   Phase-Field Modeling of Fracture in Ferroelectric Materials [J].
Abdollahi, Amir ;
Arias, Irene .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (02) :153-181
[2]  
Arfken G. B., 2000, Mathematical Methods for Physicists
[3]   Modeling melt convection in phase-field simulations of solidification [J].
Beckermann, C ;
Diepers, HJ ;
Steinbach, I ;
Karma, A ;
Tong, X .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :468-496
[4]   Multi-crystalline silicon solidification under controlled forced convection [J].
Cablea, M. ;
Zaidat, K. ;
Gagnoud, A. ;
Nouri, A. ;
Chichignoud, G. ;
Delannoy, Y. .
JOURNAL OF CRYSTAL GROWTH, 2015, 417 :44-50
[5]   Alya: Computational Solid Mechanics for Supercomputers [J].
Casoni, E. ;
Jerusalem, A. ;
Samaniego, C. ;
Eguzkitza, B. ;
Lafortune, P. ;
Tjahjanto, D. D. ;
Saez, X. ;
Houzeaux, G. ;
Vazquez, M. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2015, 22 (04) :557-576
[6]   Efficient adaptive three-dimensional phase field simulation of free dendritic growth under natural convection [J].
Chen, C. C. ;
Lan, C. W. .
JOURNAL OF CRYSTAL GROWTH, 2010, 312 (08) :1437-1442
[7]   Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs 3D morphologies [J].
Chen, C. C. ;
Tsai, Y. L. ;
Lan, C. W. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (5-6) :1158-1166
[8]   An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J].
Chen, L. ;
Chen, J. ;
Lebensohn, R. A. ;
Ji, Y. Z. ;
Heo, T. W. ;
Bhattacharyya, S. ;
Chang, K. ;
Mathaudhu, S. ;
Liu, Z. K. ;
Chen, L. -Q. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 :829-848
[9]  
Choi Y., 2015, J KSIAM, V9, P103