Android Malware Detection Using Hybrid Analysis and Machine Learning Technique

被引:8
作者
Yang, Fan [1 ]
Zhuang, Yi [1 ]
Wang, Jun [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing, Jiangsu, Peoples R China
来源
CLOUD COMPUTING AND SECURITY, PT II | 2017年 / 10603卷
基金
中国国家自然科学基金;
关键词
Android; Malware detection; Dynamic analysis; Static analysis; Machine learning;
D O I
10.1007/978-3-319-68542-7_48
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a two-stage Android malware detection and classification mechanism based on machine learning algorithm. In this paper, we use the static analysis method to extract the software's package features, permission features, component features and triggering mechanism. Then we use the dynamic analysis tools to obtain the dynamic behavior characters of the software, and format the static and dynamic features. Finally, we use the machine learning algorithm to deal with the feature eigenvectors in two stages, and then we will get the malicious classification of the software. The experimental results show that in the data set used in this paper the proposed method based on the combination of dynamic and static malicious code detection is more accurate than the common detection engine, and the ability of classifying malicious family is much stronger.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 2012, P 10 INT C MOB SYST
[2]  
[Anonymous], 2012, NDSS
[3]  
[Anonymous], 2011, Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices
[4]  
Arp Daniel., 2014, NETWORK DISTRIBUTED
[5]   Evaluation of Android Malware Detection Based on System Calls [J].
Dimjasevic, Marko ;
Atzeni, Simone ;
Rakamaric, Zvonimir ;
Ugrina, Ivo .
IWSPA'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL WORKSHOP ON SECURITY AND PRIVACY ANALYTICS, 2016, :1-8
[6]   TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones [J].
Enck, William ;
Gilbert, Peter ;
Han, Seungyeop ;
Tendulkar, Vasant ;
Chun, Byung-Gon ;
Cox, Landon P. ;
Jung, Jaeyeon ;
McDaniel, Patrick ;
Sheth, Anmol N. .
ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2014, 32 (02)
[7]   APK Auditor: Permission-based Android malware detection system [J].
Kabakus, Abdullah Talha ;
Alper, Dogru Ibrahim ;
Aydin, Cetin .
DIGITAL INVESTIGATION, 2015, 13 :1-14
[8]  
Lantz P., 2012, DROIDBOX ANDROID APP
[9]   Divide-and-Conquer: Why Android Malware cannot be stopped [J].
Maier, Dominik ;
Mueller, Tilo ;
Protsenko, Mykola .
2014 NINTH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES), 2015, :30-39
[10]   Mobile malware detection through analysis of deviations in application network behavior [J].
Shabtai, A. ;
Tenenboim-Chekina, L. ;
Mimran, D. ;
Rokach, L. ;
Shapira, B. ;
Elovici, Y. .
COMPUTERS & SECURITY, 2014, 43 :1-18