A Monte Carlo computation of polynomial approximations on a hypercube

被引:0
作者
Maire, S [1 ]
机构
[1] Univ Toulon & Var, ISITV, F-83262 La Valette Du Var, France
关键词
D O I
10.1016/S1631-073X(03)00014-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe a Monte Carlo method which enables an iterative computation of the L-2 approximation of a function on any orthonormal basis. We use it for the approximation of smooth functions on an hypercube with the help of multidimensional orthogonal polynomial basis containing only few terms. The algorithm is both a tool for approximation and numerical integration.
引用
收藏
页码:185 / 190
页数:6
相关论文
共 6 条
[1]  
ATANASSOV EI, 1999, MONTE CARLO METH, V5, P149
[2]  
Bernardi Christine., 1992, APPROXIMATIONS SPECT
[3]  
Hardy GodfreyHarold., 1979, An Introduction to the Theory of Numbers, V5
[4]  
KROMMER A. R., 1998, COMPUTATIONAL INTEGR, DOI DOI 10.1137/1.9781611971460
[5]  
Maire S., 2001, THESIS U TOULON
[6]  
MAIRE S, 2002, IN PRESS J STAT COMP