A nanobody modulates the p53 transcriptional program without perturbing its functional architecture

被引:27
作者
Bethuyne, Jonas [1 ]
De Gieter, Steven [2 ,3 ]
Zwaenepoel, Olivier [1 ]
Garcia-Pino, Abel [2 ,3 ]
Durinck, Kaat [4 ]
Verhelle, Adriaan [1 ]
Hassanzadeh-Ghassabeh, Gholamreza [5 ]
Speleman, Frank [4 ]
Loris, Remy [2 ,3 ]
Gettemans, Jan [1 ]
机构
[1] Univ Ghent, Dept Biochem, Nanobody Lab, B-9000 Ghent, Belgium
[2] Vrije Univ Brussel, Dept Biotechnol, Struct Biol Brussels, B-1050 Brussels, Belgium
[3] VIB, Struct Biol Res Ctr, B-1050 Brussels, Belgium
[4] Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, Belgium
[5] VIB, Nanobody Serv Facil, B-1050 Brussels, Belgium
关键词
PROTEIN-PROTEIN INTERACTIONS; DNA-BINDING DOMAIN; MUTANT P53; CORE DOMAIN; IN-VIVO; STRUCTURAL BIOLOGY; TUMOR SUPPRESSION; PIFITHRIN-ALPHA; CELL-LINES; WILD-TYPE;
D O I
10.1093/nar/gku962
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The p53 transcription factor plays an important role in genome integrity. To perform this task, p53 regulates the transcription of genes promoting various cellular outcomes including cell cycle arrest, apoptosis or senescence. The precise regulation of this activity remains elusive as numerous mechanisms, e.g. posttranslational modifications of p53 and (non) covalent p53 binding partners, influence the p53 transcriptional program. We developed a novel, non-invasive tool to manipulate endogenous p53. Nanobodies (Nb), raised against the DNA-binding domain of p53, allow us to distinctively target both wild type and mutant p53 with great specificity. Nb3 preferentially binds 'structural' mutant p53, i.e. R175H and R282W, while a second but distinct nanobody, Nb139, binds both mutant and wild type p53. The co-crystal structure of the p53 DNA-binding domain in complex with Nb139 (1.9 angstrom resolution) reveals that Nb139 binds opposite the DNA-binding surface. Furthermore, we demonstrate that Nb139 does not disturb the functional architecture of the p53 DNA-binding domain using conformation-specific p53 antibody immunoprecipitations, glutaraldehyde crosslinking assays and chromatin immunoprecipitation. Functionally, the binding of Nb139 to p53 allows us to perturb the transactivation of p53 target genes. We propose that reduced recruitment of transcriptional co-activators or modulation of selected post-transcriptional modifications account for these observations.
引用
收藏
页码:12928 / 12938
页数:11
相关论文
共 64 条
  • [1] Towards automated crystallographic structure refinement with phenix.refine
    Afonine, Pavel V.
    Grosse-Kunstleve, Ralf W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Moriarty, Nigel W.
    Mustyakimov, Marat
    Terwilliger, Thomas C.
    Urzhumtsev, Alexandre
    Zwart, Peter H.
    Adams, Paul D.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2012, 68 : 352 - 367
  • [2] Small-molecule inhibitors of protein-protein interactions: Progressing towards the dream
    Arkin, MR
    Wells, JA
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (04) : 301 - 317
  • [3] Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor
    Baral, Toya Nath
    Magez, Stefan
    Stijlemans, Benoit
    Conrath, Katja
    Vanhollebeke, Benoit
    Pays, Etienne
    Muyldermans, Serge
    De Baetselier, Patrick
    [J]. NATURE MEDICINE, 2006, 12 (05) : 580 - 584
  • [4] Transcriptional Regulation by p53
    Beckerman, Rachel
    Prives, Carol
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (08): : a000935
  • [5] Analysis of p53 mutation status in human cancer cell lines - A paradigm for cell line cross-contamination
    Berglind, Hanna
    Pawitan, Yudi
    Kato, Shunsuke
    Ishioka, Chikashi
    Soussi, Thierry
    [J]. CANCER BIOLOGY & THERAPY, 2008, 7 (05) : 699 - 708
  • [6] A large-scale RNAi screen in human cells identifies new components of the p53 pathway
    Berns, K
    Hijmans, EM
    Mullenders, J
    Brummelkamp, TR
    Velds, A
    Heimerikx, M
    Kerkhoven, RM
    Madiredjo, M
    Nijkamp, W
    Weigelt, B
    Agami, R
    Ge, W
    Cavet, G
    Linsley, PS
    Beijersbergen, RL
    Bernards, R
    [J]. NATURE, 2004, 428 (6981) : 431 - 437
  • [7] Deconstructing p53 transcriptional networks in tumor suppression
    Bieging, Kathryn T.
    Attardi, Laura D.
    [J]. TRENDS IN CELL BIOLOGY, 2012, 22 (02) : 97 - 106
  • [8] Thermodynamic stability of wild-type and mutant p53 core domain
    Bullock, AN
    Henckel, J
    DeDecker, BS
    Johnson, CM
    Nikolova, PV
    Proctor, MR
    Lane, DP
    Fersht, AR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (26) : 14338 - 14342
  • [9] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21
  • [10] Crystal Structure of the p53 Core Domain Bound to a Full Consensus Site as a Self-Assembled Tetramer
    Chen, Yongheng
    Dey, Raja
    Chen, Lin
    [J]. STRUCTURE, 2010, 18 (02) : 246 - 256